

Microbes and Infectious Diseases

Journal homepage: https://mid.journals.ekb.eg/

Original article

Hepatitis B virus infection and its associated risk factors in pregnant women in Upper Egypt: A cross-sectional study

Amira Maher ^{1*}, Mamdouh ElSemary Ayed ², Osama Abbas Orabi ³, Radwa Mohamed Farag ⁴, Nesma Atef Mohamed ⁵, El-Zahraa Mohammed Meghezel ¹

- 1- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Sohag University, Egypt
- 2- Department of Gynecology and Obstetrics, Faculty of Medicine, Sohag University, Egypt
- 3- Department of Internal Medicine, Faculty of Medicine, Sohag University, Egypt
- 4- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Egypt
- 5- Department of Microbiology and Immunology, Faculty of Medicine, Sohag University, Egypt

ARTICLE INFO

Article history:

Received 13 November 2024 Received in revised form 21 December

Accepted 24 December 2024

Keywords:

Anti-HBe

HBV HBsAg Pregnant women in Upper Egypt

ABSTRACT

Background: Hepatitis B virus (HBV) is transmitted from mother to child during labor. This work aimed to assess the frequency of hepatitis B surface antigen (HBsAg) seropositivity among pregnant women in Upper Egypt, to identify factors associated with virus acquisition, and to assess the predictors of anti-HBe seropositivity in pregnancy. **Methods:** This cross-sectional research was done on 300 pregnant women attending the Antenatal Care Unit of Sohag University Hospital from April 2022 to February 2023. Participants answered a survey about demographic information, HBV vaccination, and risk factors for transmission. Blood samples were tested for HBsAg. Positive samples were tested for transaminases, hepatitis B e antigen (HBeAg), anti-HBe, and viral load. Results: Frequency of HBsAg seropositivity was 5.33%. HBV DNA was detectable in 56.25%, median of 437 IU/ml (48-719 IU/ml); all were HBeAg negative, anti-HBe was positive at 25%. The only statistically significant difference between HBsAg-positive and negative cases was the husband's HBV infection (p = 0.005). The only statistically significant difference between anti-HBe positive and negative cases was quantitative HBsAg. One variable was significant using the univariate regression analysis (husband's HBV infection); there was no need to do multivariate regression analysis, so the husband's HBV infection was the only supposed risk factor for the mother's HBsAg positivity. Conclusions: The frequency of HBsAg seropositivity in pregnant women is high in Upper Egypt, denoting the importance of HBV screening during pregnancy to decrease the risk of maternofetal transmission. The detection of anti-HBe in the sera of pregnant women should be interpreted cautiously.

Introduction

Life-threatening and preventable hepatitis B virus (HBV) causes liver infections. HBV is responsible for an estimated 296 million cases of

infection and 820,000 fatalities globally, primarily from cirrhosis and hepatocellular carcinoma [1]. It is estimated that between 1.5% and 9.5% of pregnant women have an HBV infection [2,3].

DOI: 10.21608/MID.2024.336214.2344

^{*} Corresponding author: Amira Maher

HBV is predominantly transmitted from mother to child during labor [4]. In terms of maternofetal transmission, a great viral load is the most critical risk factor [5]. Hepatitis B antigen (HBeAg) seropositivity, HBV S variant, and risks of premature delivery are additional variables [6].

In Egypt, guidelines for managing HBV in pregnant women have been established by the National Committee for Control of Viral Hepatitis. These guidelines address different approaches for HBV screening, vaccination, treatment, delivery and newborn management, and follow-up of pregnant women with HBV infection [7]. Many strategies exist for reducing the possibility of maternofetal transfer. Antenatal screening with hepatitis B surface antigen (HBsAg) for all pregnant women should be the first step. Infants born to mothers who test positive for HBV should be passively and actively vaccinated throughout the first twelve hours of their lives. Finally, beginning in weeks 24-28 and continuing for 12 weeks following delivery, pregnant women with great viremia (≥200,000 IU/mL) should be administered antiviral prophylaxis [8].

Many authors reported a significant association of quantitative HBsAg and HBV viral load [9,10]. In addition, there is evidence from several sources that correlate HBeAg seropositivity to an elevated viral load [11]. The detection of Hepatitis B e antibodies (anti-HBe) in the circulation of chronic HBV patients indicates suppression of viral replication [12]. This explains the proposed protective role of anti-HBe against maternofetal transmission [13-15]. Thus, this work aimed to assess the frequency of HBsAg seropositivity among pregnant women in Upper Egypt, to identify factors associated with virus acquisition, and to assess the predictors of anti-HBe seropositivity in pregnancy.

Material and methods

Study area

Participants were recruited from the Antenatal Care Unit of Sohag University Hospital.

Study design and ethical considerations

This cross-sectional research was done on 300 pregnant women attending the Antenatal Care Unit of Sohag University Hospital from April 2022 to February 2023 after obtaining ethical approval from the Scientific Research Ethical Committee, Faculty of Medicine, Sohag University (IRB: Soh-Med-22-03-33). Clinical Trials registration number:

NCT05442372. We included all pregnant women who attended the antenatal care and agreed to participate in the study during the study period.

Data collection procedure

Participants answered a brief survey that included demographic information, history of HBV vaccination, and potential risk factors for HBV transmission such as previous operations, dental procedures, tattooing, blood transfusion, family history of HBV infection, and HBV infection of the husband.

Blood sample collection and analysis

Blood samples were aspirated from pregnant women on both plain (for serum isolation) and EDTA-supplemented (for plasma isolation) blood-collecting tubes under complete aseptic conditions. Samples were centrifuged at 5000 rpm for 10 minutes and then stored at -20 °C for further analysis. We investigated HBsAg with a Cobas e411 analyzer (F. Hoffmann, La Roche, Basel, Switzerland) that uses electrochemiluminescence immunoassay technology. The software generated the results on its own. The measuring range was 50-13,000 IU/mL, lower detection limit: of 0.5 IU/ml. All positive samples were investigated for alanine transaminase (ALT) and aspartate transaminase (AST) by the Cobas c311 chemical analyzer (Roche GmbH, Mannheim, Diagnostic Germany) (measuring range: 5 - 700 U/L), HBeAg (cut off value: 1, lower detection limit: ≤ 0.3 IU/ml), and anti-HBe by the Cobas e411 analyzer (F. Hoffmann, La Roche, Basel, Switzerland) (cut off value: 1, lower detection limit: ≤ 0.2 IU/ml), and quantitative detection of HBV deoxyribonucleic acid (DNA) by Rotor-GeneQ real-time polymerase chain reaction (PCR) (QIAGEN, Hilden, Germany) (Analytical sensitivity: 0.02 IU /micro L).

Statistical analysis

- Statistical package for social sciences (IBM-SPSS), version 25 (IBM-Corporation, Chicago, USA; August 2017) was used for statistical data analysis.
- Data were expressed as mean, standard deviation (SD), number and percentage. Mean and SD were used as descriptive value for quantitative data.
- Student t-test was used to compare the means between two groups and Mann-Whitney test was used instead of student t-test for non-parametric data to compare medians rather than means between the two groups.

- Pearson Chi-square test was used to compare percentages of qualitative variables, and Fisher's exact test was used instead for non -arametric data.
- Pearson correlation test was used to compare two quantitative variables. The value of (r) is explained in the following figures:
 - \circ r < 0.2-0.4 → weak correlation
 - o r between $0.4-0.7 \rightarrow$ moderate correlation
 - o $r > 0.7 \rightarrow$ strong correlation
- Receiver Operating Characteristics curve (ROC curve) analysis was done to assess the predictive value of both quantitative HBsAg and PCR for positive anti-HBe
- Univariate followed by multivariate binary logistic regression analysis was done to assess the possible predictors for both HBsAg positivity, and anti-HBe antibodies seropositivity.
- For all these tests, the level of significance (p-value) was considered significant if <0.05 and highly significant if <0.001.

Results

The mean age of the studied population was 27.85±5.78 years, with a range of 17–42 years. The mean gestational age was 30.65±8.78, with a range of 6–40 weeks. The only statistically significant variance amongst HBsAg-positive and negative cases was the husband's HBV infection (*p* = 0.005). (**Table 1**). As shown in **figure (1**), HBsAg seropositivity was found in 5.33% (16 cases) of the study population. Among HBsAg-positive cases, HBV DNA was detectable in 9 cases (56.25%), with a median of 437 IU/ml (range 48-719 IU/ml), and quantitative HBsAg had a median of 525 IU/ml (range 370-2850 IU/ml). All HBsAg-positive cases were HBeAg negative, while anti-HBe was positive in four cases (25%). Mean ALT and AST of HBsAg-

positive cases were 11.13±2.53 IU/L and 17.81±8.22 IU/L, respectively (**Table 2**).

On comparing anti-HBe positive and negative cases, we found that quantitative HBsAg was the only highly statistically significant difference between both groups (p < 0.001) (**Table 3**).

As only one variable was significant using the univariate regression analysis for predictors of HBsAg seropositivity (husband's HBV infection), there was no need to do multivariate regression analysis, and so the husband's HBV infection was the only supposed risk factor for the mother's HBsAg positivity (**Table 4**).

According to **table** (5), none of these variables (age, gestational age, booster dose, operation, dental procedures, blood transfusion, tattoo, family history of HBV, husband's HBV infection, quantitative HBsAg, PCR, ALT, and AST) could be considered a predictor of positive anti-HBe among cases with positive HBsAg. There was no need to do multivariate regression analysis.

Table 6 displayed that the only significant association was found amongst AST levels and each of the quantitative HBsAg and ALT levels (p= 0.020, <0.001 respectively), with a positive and moderate correlation between AST and quantitative HBsAg and a strong correlation between AST and ALT.

According to **figure (2)**, HBsAg cut-off levels above 1635 IU/ml were associated with positive anti-HBe with a sensitivity of 100% and a specificity of 91.7%.

PCR cannot be used as a predictive test for positive anti-HBe with a non-significant relationship (**Figure 3**).

Table 1. Demographic data of the study population.

Item	-	Total	HBsAg-	HBsAg-negative	P value
		(N=300)	positive cases	cases	
			(N=16)	(N=284)	
Age	Mean±SD	27.85±5.78	30.31±5.43	27.71±5.78	0.080(NS)
	Median(range)	27(17-42)	28.5(22-40)	27(17-42)	
Gestational age	Mean±SD	30.65±8.78	33.00±5.05	30.51±8.9	0.084(NS)
	Median(range)	34(6-40)	34.5(21-38)	34(6-40)	
Booster dose	No. (%)	17(5.7%)	2(12.5%)	15(5.3%)	0.224(NS)
Operation	No. (%)	125(41.7%)	8(50%)	117(41.2%)	0.487(NS)
Dental procedures	No. (%)	95(31.7%)	6(37.5%)	89(31.3%)	0.606(NS)
Blood transfusion	No. (%)	35(11.7%)	4(25%)	31(10.9%)	0.088(NS)
Tattoo	No. (%)	2(0.7%)	0	2(0.7%)	1.000(NS)
Family history of	No. (%)	9(3%)	1(6.3%)	8(2.8%)	0.433(NS)
HBV					
Husband HBV	No. (%)	2(0.7%)	1(6.3%)	1(0.4%)	0.005*
infection					

HBV: hepatitis B virus, NS: not significant, SD: standard deviation, * significant

Table 2. Laboratory data of HBsAg-positive cases (N=16).

Item		Value		
Quantitative HBsAg (IU/ml)	Mean±SD	1194±1070		
	Median (range)	525 (370-2850)		
PCR (IU/ml)	Mean±SD	433.11±233.22		
	Median (range)	437 (48-719)		
	Positive	9 (56.25%)		
	Under-detectable	7 (43.75%)		
HBeAg	Positive	0		
	Negative	16 (100%)		
Anti-HBe	Positive	4 (25%)		
	Negative	12 (75%)		
ALT (IU/L)	Mean±SD	11.13±2.53		
	Median (range)	10 (10-18)		
AST (IU/L)	Mean±SD	17.81±8.22		
	Median (range)	15 (10-40)		

ALT: alanine transaminase, Anti-HBe: hepatitis B e antibody, AST: aspartate transaminase, HBeAg: hepatitis B e antigen, HBsAg: hepatitis B surface antigen, PCR: polymerase chain reaction, SD: standard deviation.

Table 3. Comparison between anti-HBe positive and negative cases.

Item		Anti-HBe positive cases (N=4)	Anti-HBe Negative cases (N=12)	P value
Age	Mean±SD	31.00±8.29	30.08±4.60	0.781 (NS)
	Median (range)	31.5 (22-39)	28.5 (25-40)	
Gestational age	Mean±SD	30.75±6.08	33.75±4.71	0.410 (NS)
	Median (range)	32.5 (22-36)	35.5 (21-38)	
Booster	No. (%)	1 (25%)	1 (8.3%)	0.450 (NS)
Operation	No. (%)	1 (25%)	7 (58.3%)	0.569 (NS)
Dental	No. (%)	1 (25%)	5 (41.7%)	0.551 (NS)
Blood transfusion	No. (%)	1 (25%)	3 (25%)	1.000 (NS)
Tattoo	No. (%)	0	0	-
Family history of HBV	No. (%)	0	1 (8.3%)	1.000 (NS)
Husband HBV infection	No. (%)	0	1 (8.3%)	1.000 (NS)
Quantitative HBsAg (IU/ml)	Mean±SD Median (range)	2745±0.12 2270 (2590-2850)	676.7±625.5 500 (370-2640)	<0.001**
PCR (IU/ml)	Mean±SD Median (range)	484.3±248.5 566 (132-672)	392.2±240.4 420 (48-719)	0.591 (NS)
ALT (IU/L)	Mean±SD Median (range)	10.25±0.50 10 (10-11)	11.42±2.88 10 (10-18)	0.443 (NS)
AST (IU/L)	Mean±SD Median (range)	21.00±3.56 20.5 (18-25)	16.75±9.16 14 (10-40)	0.389 (NS)

ALT: alanine transaminase, Anti-HBe: hepatitis B e antibody, AST: aspartate transaminase, NS: not significant, PCR: polymerase chain reaction, ** Highly significant.

 Table 4. Predictors of HBsAg seropositivity.

Item	Univariate regression analysis			Multivariate regression analysis		
	Odd's ratio	CI of Odd's	P value	Odd's ratio	CI of Odd's	P value
Age	1.078	0.990-1.174	0.085	1.078	0.984- 1.182	0.107
Gestational age	1.042	0.968-1.121	0.278	1.044	0.961- 1.134	0.307
Booster dose	2.562	0.533-12.317	0.240	2.250	0.401- 12.619	0.357
Operation	1.427	0.521-3.911	0.489	1.153	0.390- 3.407	0.797
Dental procedures	1.315	0.463-3.729	0.607	0.873	0.282- 2.708	0.814
Blood transfusion	2.720	0.826-8.955	0.100	2.815	0.785- 10.093	0.112
Tattoo	1.000	0.999-1.001	1.000	1.000	0.999- 1.001	0.999
Family history of HBV	2.300	0.270-19.604	0.446	1.703	0.096- 30.169	0.716
Husband HBV infection	18.867	1.125- 316.534	0.041*	16.071	0.581- 44.506	0.101

^{*}Significant, CI: confidence interval.

 Table 5. Predictors of Anti-HBe seropositivity among HBsAg-positive cases.

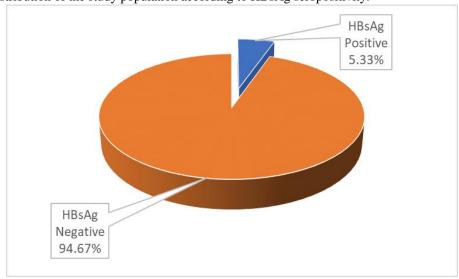

Item	Univariate regression analysis				
	Odd's ratio	CI of Odd's	P value		
Age	1.033	0.835-1.279	0.763		
Gestational age	0.893	0.719-1.111	0.311		
Booster dose	3.667	0.173-77.552	0.404		
Operation	0.238	0.019-3.011	0.268		
Dental procedures	0.467	0.037-5.903	0.556		
Blood transfusion	1.000	0.073-13.644	1.000		
Tattoo	0.333	0.033-3.987	0.057		
Family history of HBV	0.999	0.998-1.003	1.000		
Husband HBV infection	1.000	0.997-1.004	1.000		
Quantitative HBsAg	0.680	0.005-8.40	0.417		
PCR	1.002	0.996-1.008	0.539		
ALT	0.675	0.204-2.239	0.521		
AST	1.063	0.929-1.217	0.375		

Table 6. Correlation statistics.

		Quantitative				
		HBsAg	PCR	Age	Gestational age	ALT
PCR	R	0.177				
	P	0.649				
Age	R	0.132	-0.077			
	P	0.626	0.844			
Gestational age	R	-0.076	-0.416	0.092		
	P	0.779	0.266	0.111		
ALT	R	0.178	-0.162	0.430	0.099	
	P	0.510	0.677	0.097	0.714	
AST	R	0.573	0.164	0.209	-0.035	0.794
	P	0.020	0.674	0.437	0.897	< 0.001

P: P value, R: Pearson Correlation coefficient.

Figure 1. Distribution of the study population according to HBsAg seropositivity.

HBsAg: hepatitis B surface antigen

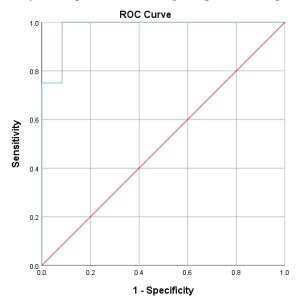
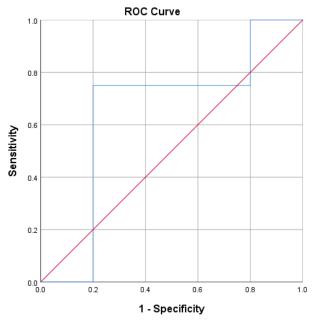



Figure 2. ROC curve analysis for quantitative HBsAg as a predictor for positive anti-HBe.

Figure 3. ROC curve analysis for PCR as a predictive for positive anti-HBe.

Discussion

The current cross-sectional study displayed that the mean age of the studied population was 27.85±5.78 years, with a range of 17–42 years. The mean gestational age was 30.65±8.78, with a range of 6–40 weeks. There were 9 women (3%) with no family history of HBV. There were 2 women (0.7%) with no husband HBV infection.

This was consistent with **Fomulu et al.** [16] who stated that the study involved 959 participants, whose ages ranged from 15 to 43 years, with an average age of 27.6 ± 5.2 years. Our cases' average gestational age was 29.2 weeks, with a minimum of 6 and a maximum of 42 weeks.

Our results demonstrated a moderate frequency (5%) of HBsAg seropositivity in pregnant women. A similar percentage among pregnant women in Northeast Egypt was reported by Kisk et al. [17]. Also, the pooled prevalence of hepatitis B infection among pregnant women in Africa was found to be intermediate-high (6.77%) [18]. In addition, Wondmeneh et al. [19] reported that an intermediate endemic level of HBV infection (2-7%) was observed among pregnant women in Africa. However. there was significant heterogeneity across studies. Lower values were reported from Nigeria [20] and Saudi Arabia [21]. On the contrary, higher values were reported from Kenya [22] and Pakistan [23]. Kumar et al. [24]

reported that in the Asia–Pacific region the prevalence of chronic HBV infection in pregnant women varies significantly depending on the region. The variability of HBsAg seropositivity in literature could be explained by diverse cultural backgrounds and sexual practices [25].

We found that the only statistically significant variable among HBsAg-positive and HBsAg-negative cases was the husband's HBV infection. Moreover, regression analysis showed that the husband's HBV infection was the only supposed risk factor for the mother's HBsAg seropositivity. However, we did not find a statistically significant variance between HBsAg-positive and HBsAg-negative cases concerning age, gestational age, booster dose, operation, dental procedures, blood transfusion, tattoo, or family history of HBV, and these factors were not supposed to be risk factors for the mother's HBs Ag positivity.

In the same vein, our results agreed with **Rabiu et al.** [26], who detected that there was no statistically significant variance between anti-HBe positive and negative cases concerning age, previous blood transfusion, previous dental surgery, and the presence of tattoos. In addition, **El Ghitany et al.** [27] reported that tattoos were not supposed to be a risk factor for positive HBsAg. Also, a meta-analysis carried out by **Wondmeneh et al.** [19] reported that the pooled effect size of the included studies indicated non-statistically significant association between tattoos and HBV infection.

On the other hand, our results contrast with Kinfe et al. [28], who observed that dental procedures, history of surgery, and history of tattooing were among the factors associated with HBsAg seropositivity in pregnant Ethiopian women. Moreover, Luksamijarulkul et al. [29] stated that tattooing was a significant risk factor for HBsAg positivity in pregnant women from Thailand. The difference in safety measures of these procedures between the two localities could explain this contrast. Our results also contrast with Khalil et al. [30], who reported that the prevalence of a family history of HBV among HBV-positive participants was 51%, which was substantially higher than that of HBV-negative patients (13.6%) (p = 0.001). Moreover, they found a significant relationship between previous surgical procedures and the presence of HBsAg (p = 0.009).

Another finding of the current study is the significantly higher levels of HBsAg in anti-HBe

positive pregnant women. Moreover, we found that HBsAg at cut-off levels above 1635 IU/ml was associated with positive anti-HBe with high sensitivity and specificity (100% and 91.7% respectively). This finding could be explained by the high frequency of the pre-core and core promoter mutants in the Middle East [31, 32]. Chronic HBV patients infected with these mutants will have negative HBeAg in their serum, along with positive anti-HBe despite active viral replication [9].

According to our results, none of these variables (age, gestational age, booster dose, operation, dental procedures, blood transfusion, tattoo, family history of HBV, husband's HBV infection, quantitative HBsAg, PCR, ALT, and AST) could be considered a predictor of positive anti-HBe among cases with positive HBsAg.

We found that the only significant correlation was found between AST levels and each of the quantitative HBsAg and ALT levels, with a positive and moderate correlation between AST and quantitative HBsAg and a strong correlation between AST and ALT.

Along with our results, **Cerrah et al.** [33] reported that there were significant relationships amongst the HBsAg DNA level and ALT. In addition, **Fazaa et al.** [34] reported that a positive correlation was found between HBV-DNA loads and ALT and AST.

Conclusions

The frequency of HBsAg seropositivity in pregnant women is high in Upper Egypt, denoting the importance of HBV screening during pregnancy to decrease the risk of maternofetal transmission. The detection of anti-HBe in the sera of pregnant women should be interpreted cautiously.

Abbreviations

ALT: alanine transaminase, anti-HBe: hepatitis B e antigen, AST: aspartate transaminase, DNA: deoxyribonucleic acid, HBeAg: heptitis B e antigen, HBsAg: hepatitis B surface antigen, HBV: hepatitis B virus, PCR: polymerase chain reaction.

Declarations

Ethics approval and consent to participate

Ethical approval was obtained from the Scientific Research Ethical Committee, Faculty of Medicine, Sohag University (IRB: Soh-Med-22-03-33). Clinical Trials registration number: NCT05442372. Written informed consent was obtained from each participant.

Consent for publication

Not applicable.

Availability of data and material

The required data and materials were all available.

Competing interests

The authors declare that they have no competing interests.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors' contributions

MAE collected participants' data. EMM analyzed and interpreted the patient data. RFM and NA performed the laboratory workup. OOA and AM were major contributors in writing the manuscript. All authors read and approved the final manuscript.

References

- **1-Keeffe EB.** Hepatitis A and B superimposed on chronic liver disease: vaccine-preventable diseases. Trans Am Clin Climatol 2006; 117:227-37.
- **2-El-Magrahe H, Furarah AR, El-Figih K, El-Urshfany S, Ghenghesh KS.** Maternal and neonatal seroprevalence of Hepatitis B surface antigen (HBsAg) in Tripoli, Libya. J Infect Dev Ctries 2010;4(03):168-70.
- **3-Ephraim R, Donko I, Sakyi SA, Ampong J, Agbodjakey H.** Seroprevalence and risk factors of hepatitis B and hepatitis C infections among pregnant women in the Asante Akim North Municipality of the Ashanti region, Ghana; a cross sectional study. Afr Health Sci 2015; 15(3):709-13.
- **4-Li Z, Hou X, Cao G.** Is mother-to-infant transmission the most important factor for persistent HBV infection? Emerg Microbes Infect 2015;4(1):1-9.
- 5-Singh AE, Plitt SS, Osiowy C, Surynicz K, Kouadjo E, Preiksaitis J, et al. Factors associated with vaccine failure and vertical

- transmission of hepatitis B among a cohort of Canadian mothers and infants. J. viral hepatitis 2011;18(7):468-73.
- 6-Molla S, Munshea A, Nibret E. Seroprevalence of hepatitis B surface antigen and anti HCV antibody and its associated risk factors among pregnant women attending maternity ward of Felege Hiwot Referral Hospital, northwest Ethiopia: a cross-sectional study. Virol J 2015;12:1-9.
- **7-National Committee for Control of Viral Hepatitis.** Guidelines for Management of Hepatitis B Virus Infection in Pregnant Women. Egypt: NCCVH, 2022. Accessed [20 December 2024]. https://www.nccvh.org.eg.
- **8-Chamroonkul N, Piratvisuth T.** Hepatitis B during pregnancy in endemic areas: screening, treatment, and prevention of mother-to-child transmission. Paediatr Drugs 2017;19:173-81.
- **9-Belopolskaya M, Avrutin V, Firsov S, Yakovlev.** HBsAg level and hepatitis B viral load correlation with focus on pregnancy.

 Annals of gastroenterology: quarterly publication of the Hellenic Society of Gastroenterology 2015,28(3): 379.
- 10-Wang C, Pan YC, Jia ZF, Chi XM, Wang YQ, Yang N, et al. The relationship between hepatitis B virus serum DNA, RNA and quantitative hepatitis B surface antigen, and the predictive value for mother-to-child transmission: an observational cohort study. BJOG: An International Journal of Obstetrics & Gynaecology 2022, 29(2):241-247.
- **11-Cornberg M, Wong VW, Locarnini S, Brunetto M, Janssen HL, Chan HL.** The role of quantitative hepatitis B surface antigen revisited. J. Hepatol 2017;66(2):398-411.
- **12-de Almeida Pondé RA.** Dynamic profile of the HBeAg-anti-HBe system in acute and chronic hepatitis B virus infection: A clinical-

- laboratory approach. Mol Biol Rep 2021;48(1), 843-854.
- **13-Chen DS.** Hepatitis B vaccination: the key towards elimination and eradication of hepatitis B. J Hepatol 2009;50(4), 805-816.
- 14-Shao ZJ, Zhang L, Xu JQ, Xu DZ, Men K, Zhang JX, et al. Mother-to-infant transmission of hepatitis B virus: a Chinese experience. J Med Virol 2011;83(5), 791-795.
- **15-Lu LL, Chen BX, Wang J, Wang D, Ji Y, Yi HG, et al.** Maternal transmission risk and antibody levels against hepatitis B virus e antigen in pregnant women. Int J Infect Dis 2014; 28, 41-44.
- **16-Fomulu NJ, Morfaw FL, Torimiro JN, Nana P, Koh MV, William T.** Prevalence,
 correlates and pattern of Hepatitis B among
 antenatal clinic attenders in YaoundeCameroon: is perinatal transmission of HBV
 neglected in Cameroon?. BMC Pregnancy
 Childbirth 2013;13(1):1-0.
- 17-Kishk R, Mandour M, Elprince M, Salem A, Nemr N, Eida M, et al. Pattern and interpretation of hepatitis B virus markers among pregnant women in North East Egypt. Braz J Microbiol 2020;51, 593-600.
- **18-Larebo YM, Anshebo AA, Abdo RA, Behera SK, Gopalan N.** Prevalence of hepatitis B virus infection among pregnant women in Africa: A systematic review and meta-analysis. Plos one 2024;19(7):e0305838.
- 19-Wondmeneh TG, Mekonnen AT.

 Epidemiology of hepatitis B virus infection among pregnant women in Africa: a systematic review and meta-analysis. BMC Infectious Diseases 2024;24(1):921.
- **20-Ukpe MT, Abasiattai AM, Utuk NM, Umoh AV, Ibanga GJ.** Prevalence of hepatitis B virus infection among antenatal attendees in a university teaching hospital in Southern

- Nigeria. Adesh Univ. J Med Sci Res 2023;5(1):9-16.
- 21-Alrowaily MA, Abolfotouh MA, Ferwanah MS. Hepatitis B virus sero-prevalence among pregnant females in Saudi Arabia. Saudi journal of gastroenterology. Saudi J Gastroenterol 2008;14(2),70-72.
- 22-Hannachi N, Bahri O, Mhalla S, Marzouk M, Sadraoui A, Belguith A et al. Hepatitis B virus infection in Tunisian pregnant women: risk factors and viral DNA levels in HBe antigen negative women. Pathol Biol 2009;57(3), e43-7.
- 23-Naseeb S, Rashid S, Dehar S. The Frequency of Hepatitis B and C and its Risk Factors in Pregnant Women Presenting at Jinnah Postgraduate Medical Center, Karachi: Hepatitis B and C and its Risk Factors in Pregnant Women. Pakistan J Health Sci 2023;83-87.
- 24-Kumar M, Abbas Z, Azami M, Belopolskaya M, Dokmeci AK, Ghazinyan H, et al. Asian Pacific association for the study of liver (APASL) guidelines: hepatitis B virus in pregnancy. Hepatology international 2022;16(2):211-253.
- **25-El-Magrahe H, Furarah AR, El-Figih K, El-Urshfany S, Ghenghesh KS.** Maternal and neonatal seroprevalence of Hepatitis B surface antigen (HBsAg) in Tripoli, Libya. J Infect Dev Ctries 2010;4(03), 168-170.
- 26-Rabiu KA, Akinola OI, Adewunmi AA, Omololu OM, Ojo TO. Risk factors for hepatitis B virus infection among pregnant women in Lagos, Nigeria. Acta obstetricia et gynecologica 2010;89(8):1024-8.
- **27-El Ghitany EM, Farghaly AG.** Serological pattern of hepatitis B virus among HBsAg negative blood donors in Alexandria, Egypt. East Mediterr Health J 2013;19(7), 600-607.

28-Kinfe H, Sendo EG, Gebremedhin KB.

Prevalence of hepatitis B virus infection and factors associated with hepatitis B virus infection among pregnant women presented to antenatal care clinics at Adigrat General Hospital in Northern Ethiopia. Int J Women's Health 2021;22:119-27.

- **29-Luksamijarulkul P, Mooktaragosa A, Luksamijarulkul S.** Risk factors for hepatitis
 B surface antigen positivity among pregnant
 women. J Med Assoc 2002;85(3):283-8.
- **30-Khalil AS, Hussein NR, Shamdeen MY.**Impact of maternal HBsAg carrier status on pregnancy outcomes in Duhok city, Iraq.
 Asian Pac J Trop Biomed 2017;7(11):1010-3.
- **31-Sayed SK.** The relationship between core promoter mutation of hepatitis B virus, viral load and hepatitis B e antigen status in chronic hepatitis B patients. Cell Immunol 2012;276(1-2):35-41.
- **32-Baha W, Ennaji M M, Lazar F, Melloul M, El Fahime E, El Malki et al.** HBV genotypes prevalence, precore and basal core mutants in Morocco. Infect Genet Evol 2012; 12(6): 157-1162.
- 33-Cerrah S, Deveci O, Bekçibaşı M, Mermutluoğlu Ç, Celen MK. The analysis of the correlations between HBsAg quantitation level, virological markers and histopathological findings in patients with chronic hepatitis B. Authorea Preprints 2021.
- **34-Fazaa AH, Atya AK, Kredy HM.** Evaluation of Liver Function Tests and Their Correlation with HBV Viral Load in Patients with Hepatitis B Virus, Thi-Qar, Iraq. HIV Nursing 2022; 22(2):1112-6.

Maher A, Ayed M, Orabi O, Farag R, Mohamed N, Meghezel E. Hepatitis B Virus Infection and its associated risk factors in pregnant women in Upper Egypt: A cross-sectional study. Microbes Infect Dis 2025; 6(4): 6229-6239.