
Microbes and Infectious Diseases 2024; 5(2): 463-478 

Microbes and Infectious Diseases 

Journal homepage: https://mid.journals.ekb.eg/ 

   DOI:  10.21608/MID.2024.258309.1734 

* Corresponding author: Md Nurul Raihen

 E-mail address: nraihen@fontbonne.edu 

© 2020 The author (s). Published by Zagazig University. This is an open access article under the CC BY 4.0  license https://creativecommons.org/licenses/by/4.0/.  

Original article 

Evaluating the impact of seasonal Influenza virus: A 

comprehensive epidemiological forecast and analysis in Ghana 

from 2021 to 2023 

Md Nurul Raihen1*, Md Mostak Ahammed2, Sultana Akter3

1- Department of Mathematics and Computer Science, Assistant Professor, Fontbonne University, St. Louis, MO, 63105, USA 

2- Department of Statistics, Visiting Faculty, Grand Valley State University, Allendale, MI, 49401, USA  

3- Sultana Akter, Teaching Assistant, MS in Statistics, Western Michigan University, Kalamazoo, MI, 49006, USA. 

Introduction 

The common symptoms of the human 

influenza virus include a hacking cough, a sore 

throat, a headache, muscle pain, dizziness, and 

coryza. Influenza appears to be similar to other 

respiratory virus illnesses unless laboratory testing 

proves different. Where it all began, influenza 

viruses belong to the family Orthomyxoviridae, 

which are members of the family of single-stranded 

ribonucleic acid (RNA) viruses. The influenza A, B, 

and C viruses are distinct from one another [1]. 

Influenza A and B viruses can produce pandemics, 

whereas type C viruses can cause a mild cold-like 

illness in humans. Flu A can infect a wide variety of 
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A B S T R A C T 

Background:  Infectious diseases are a leading cause of death and disability worldwide, 

so it is crucial to plan for their potential impact in order to implement an efficient response. 

Examining the seasonality and distribution of influenza viruses in Ghana, as well as 

susceptible demographic groups and circulating strains of the virus, were the objectives of 

this study. Methods: We worked with a modified version of the Susceptible-Exposed-

Infectious-Recovered-Vaccinated (SEIR-V) transmission model to forecast the possible 

outcomes of the influenza pandemic in Ghana. Using the fourth-order Runge-Kutta 

method, we were able to get numerical simulations for changing the model parameters. 

We analyzed forecasts for the illness transmission rate 𝛽, vaccination rate 𝜌, and recovery 

rate 𝛾 on a daily and cumulative basis. The average fundamental reproduction number for 

the parameters 𝛽 and 𝛾 was also rendered graphically. Results: We effectively forecasted 

the trajectory of influenza-related morbidity using our model, which paves the way for 

future approaches of controlling and monitoring the flu in our study area. In order to 

restrict the seasonal influenza, we have provided visual evidence that vaccinated patients 

and a quarantine in Ghana for at least the next 10 days are needed. It has been noted that 

the recovery rates of non-vaccinated patients and the vaccination rate work together to 

reduce the contagious disease. Conclusion: Using precise parameter approximations, 

theoretical epidemic analysis has proven to be an effective method for predicting and 

managing the spread of pandemics such as seasonal influenza virus. This model has been 

transformed into an epidemic model by adding the hospitalized-vaccination compartment 

for patients with confirmed infections to the SEIR-V model. 

https://mid.journals.ekb.eg/
https://creativecommons.org/licenses/by/4.0/
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mammals, including humans, as well as birds, both 

wild and domestic. Based on the genetic and 

antigenic features of their surface glycoprotein, 

influenza A viruses have been classified into nine 

neuraminidase (NA) subtypes and sixteen 

haemagglutinin (HA) subtypes. There is a vast array 

of possible combinations of the HA and NA 

proteins. Extensive human outbreaks have been 

associated with a handful of influenza A subtypes, 

namely H1N1 (H (Haemagglutinin type 1) and N 

(Neuraminidase type 1), H2N2 (H (Haemagglutinin 

type 2) and N (Neuraminidase type 2), and H3N2 (H 

(Haemagglutinin type 3) and N (Neuraminidase type 

3) [2]. The current human influenza A subtypes that

are circulating are H1N1, H3N2, and H7N9 (H 

(Haemagglutinin type 7) and N (Neuraminidase type 

9) [3, 4, 5, 6].

According to multiple studies, a consistent 

set of symptoms was identified [7]. Conflicting 

evidence suggests that encephalitis, lethal 

pneumonia, and myositis are more common 

complications of influenza B infection [8]. 

Hospitalization rates are higher for children infected 

with influenza A because they are more likely to 

show severe symptoms, such as an unwell 

appearance and other signs and symptoms of the 

disease [9]. Based on the results of the 

microneutralization experiment, it has been 

concluded that neither infants nor adults are able to 

develop a cross-reactive humoral immune response 

to the pandemic virus by vaccination. This was 

found out by comparing human sera taken before 

and after seasonal flu vaccine administration [10, 

11, 12]. 

In public health, mathematical modeling is 

crucial for understanding and predicting disease 

outbreaks. By mimicking the transmission of 

diseases, these models assess the consequences of 

various interventions [13]. With their help, we can 

streamline our data analysis, identify trends, and 

draw conclusions based on solid evidence. Health 

officials can utilize models like SEIR-V 

(Susceptible-Exposed-Infectious-Recovered-

Vaccinated) to predict the future trajectories, which 

will help us better prepare for and react to diseases 

[14]. It is essential to have them in order to distribute 

vaccines, allocate resources, and set up control 

mechanisms. Public health professionals use 

mathematical modeling to gain valuable insights 

from raw data and reduce the impact of infectious 

diseases on communities [15]. 

Many developed regions of the world have 

a good understanding of the viruses that cause 

influenza-like illness (ILI) [16]. This data is critical 

for public health interventions and prevention 

programs to be effective. Conversely, neither the 

epidemiological knowledge of ILI nor the agents 

responsible for its etiology in developing countries 

are well-established. This lack of data makes it very 

difficult for many nations to implement effective 

public health interventions and preventative 

measures. Lack of data also makes it hard to create 

realistic models of pandemic influenza infections 

and to construct effective control measures [17]. 

Public health responses to ILI can be enhanced by 

conducting more research and surveillance to better 

understand the disease and how it spreads. This is 

particularly important in developing countries with 

incomplete epidemiological data [18]. 

Flu is one of the leading causes of 

respiratory infections in Ghana. In the past, the 

country has been hit hard by influenza pandemics. 

The 1918 Spanish flu pandemic is one example of 

this. In response to a highly pathogenic avian 

influenza A(H5N1) outbreak in 2007, virological 

surveillance for influenza-like illness (ILI) was 

created by the Noguchi Memorial Institute for 

Medical Research (NMIMR) and other international 

and local health organizations. A component of the 

Integrated Disease Surveillance and Response 

(IDSR) system, this monitoring was conducted by 

the Ghana Health Service (Ministry of Health) [19]. 

The National Influenza Centers (NICs) and 

other national influenza laboratories from 122 

countries, regions, or territories supplied data to 

FluNet between November 13, 2023, and November 

26, 2023 (as of 08/12/2023 06:22:56 AM UTC). 

During that period, the laboratories affiliated with 

the WHO GISRS examined more than 301,639 

specimens. Out of 36,530 individuals who tested 

positive for influenza, 32,078 (or 87.8%) had 

influenza A and 4,861 (12.2%) had influenza B. The 

A(H1N1) pdm09 subtype had 21,327 cases (81.4%) 

while the A(H3N2) subtype had 4861 cases 

(18.6%). No less than 2,892 type B viruses belonged 

to the B/Victoria subgroup that could have their 

history traced [20]. 

As a result of the carefully placed sentinel 

sites across the country, influenza surveillance in 

Ghana covers a wide area. A complete picture of the 

influenza pandemic's spread can be created by 

utilizing this diverse set of locations, which includes 
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both civilian and military medical reception posts. 

Flu cases in Ghana tend to spike during the rainy 

season (April to October), indicating a seasonal 

pattern in the country's influenza cases. According 

to surveillance data collected between 2011 and 

2019, the number of influenza cases was higher 

during these rainy months compared to the dry 

season (November to March). Several factors may 

contribute to the seasonal increase in influenza cases 

that occur just before or just after a rainstorm. A shift 

in human behavior, such as spending more time 

indoors, may contribute to the disease's spread. 

Additionally, weather changes brought on by the 

rainy season might make the flu virus more 

hospitable to survival and transmission. While 

21,747 samples were tested for influenza-like illness 

(ILI), 3,429 samples were analyzed for severe acute 

respiratory illness (SARI) [18]. The influenza 

positive rates were highest in the 5–14 age group 

among both ILI and SARI. Fewer cases were 

reported in health centers during the dry season 

(November-March) in Ghana compared to the wet 

season (April-October). Although seasonal 

influenza occurs annually in Ghana, there has been 

no investigation into methods for predicting the 

accompanying monthly morbidity. The 

implementation of prediction-based early warning 

systems would substantially improve disease 

control, community engagement, and personal 

safety [21]. 

This study details the clinical presentation 

and socio-economic impact of 901 normally healthy 

children who visited the emergency room (ER) due 

to flu-like symptoms during the 2021–2022 and 

2022–2023 flu seasons, and whose infections were 

confirmed by laboratory testing as influenza A 

(H1N1 and H3N2) or B. The purpose of this 

research was to increase the potential sample sizes 

and time frames for studying individual-level 

selection forces by making use of publicly available 

influenza virus consensus sequencing data from 

routine monitoring. At the consensus sequence 

level, new phenotypically relevant sequence 

variants should be readily apparent if individual 

positive selection successfully shapes influenza 

virus evolution [22]. Unfortunately, consensus 

sequences do not have the resolution that next-

generation sequencing data does, making it 

impossible to describe within-host viral diversity or 

find potentially relevant denovo minority variations. 

Thus, large-scale analyses of consensus 

sequencing data can tell us how individual-level 

positive selection plays a role in the seasonal 

influenza virus's evolutionary dynamics by 

revealing whether or not people with very different 

exposure histories to the virus exhibit any 

discernible patterns of substitution. 

Objective 

The key findings and innovative 

components of this study are as follows: (a) The 

non-negativity and boundedness of solution spaces 

are examined in this paper, along with a modified 

version of the Susceptible-Exposed-Infectious-

Recovered-Vaccinated (SEIR-V) ordinary 

differential equation (ODE) model. (b) Based on a 

number of parameters, we have derived the disease-

free equilibrium points and basic reproduction 

numbers that correspond to the required system of 

first-order ordinary differential equations (ODEs). 

(c) Numerical analysis has been conducted to 

investigate the effects of the disease's transmission 

and recovery rates on the dynamics of the seasonal 

influenza virus impact. (d) A plan is put forward to 

handle the seasonal influenza virus. 

This study aims to examine the influenza 

epidemiology data set from Ghana, an African 

country. The article is structured according to the 

following outline: In section 3, we provide a context 

for the epidemiological and associated literature. 

Section 4 provides a detailed breakdown of the 

SEIR-V mathematical model. The seasonal 

influenza pandemic was also modelled using a 

compartmental approach, but this time they included 

a non-linear incidence rate [23, 24]. The solutions of 

non-negativity and boundedness are addressed in 

subsection 4.2 that follows. The point of equilibrium 

for the given model will be covered in section 5. The 

fundamental reproduction number can be obtained 

by following the straightforward computation 

shown in subsection 5.3. This is where we will find 

the "Results and Discussions" in section 6. 

Furthermore, parameter estimation for the system 

has been provided within the scope of subsection 6. 

Section 7 of this section also includes instances of 

numerical data with suitable visual representations. 

Section 8, the last section, presents the results and 

conclusions. 

Mathematical model and formulation 

The standard SIR model is used in the 

modeling of infectious diseases. This model enables 

the critical condition of disease development in a 

population to be determined given the overall 
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population size of that population. The most 

common demographic SIR form is characterized by 

[25]. 

𝑑𝑆

𝑑𝑡
= Λ − 𝛽𝐼𝑆 − 𝜇1𝑆, 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝛾𝐼 − (𝜇1 + 𝜇2)𝐼,       (1) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇1𝐼,

for any 𝑡 ∈ (0,∞) subject to the initial conditions 

𝑆(0) = 𝑆0, 𝐼(0) = 𝐼0,  and  𝑅(0) = 𝑅0,

and 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)  is the 

entire population at time 𝑡 . Here, 𝑆(𝑡) , 𝐼(𝑡), and 

𝑅(𝑡) , are the number of individuals in the 

susceptible, infectious and recovered compartments 

respectively at time 𝑡. The number of people who 

want to join the 𝑆  class is Λ . The parameter 𝛽 

denotes the rate of disease transmission, 𝛾 is the rate 

of removal, 𝜇1 is the rate of normal death, and 𝜇2 is

the rate of death only from infection. [25] contains 

the solution and thorough analysis of (1). It has been 

observed that the traditional SIR model is unable to 

investigate the situation of exposed and asymptotic 

individuals. This is a critical component in the 

propagation of the disease, particularly for 

pandemics of the SARS-CoV-2 and influenza virus 

types. As a result, it is absolutely necessary to take 

into consideration a more sophisticated model in 

order to monitor the behavior of asymptotically 

exposed class populations, as shown in Figure 1. 

Proposed model 

We propose the following SEIR-V 

(Susceptible-Exposed-Infectious-Recovered-

Vaccinated Individuals) epidemic model to study 

the dynamics of influenza virus transmission in 

Ghana [26]. In the field of epidemiology, the SEIR-

V model is a mathematical model that is utilized to 

investigate the diffusion of infectious diseases. This 

model is an extension of the SIR model, and it is 

utilized for modeling diseases that have a latent 

period before the infected person becomes 

infectiously contagious. 

𝑑𝑆

𝑑𝑡
= Λ − 𝛽

𝑆𝐼

𝑁
− 𝜌𝑆𝑉 − 𝜇𝑆,

𝑑𝐸

𝑑𝑡
= 𝛽

𝑆𝐼

𝑁
− (𝜎 + 𝜇)𝐸,

𝑑𝐼

𝑑𝑡
= σE − (γ + μ + ε)I,           (2) 

𝑑𝑅

𝑑𝑡
= γI + ηV − μR, 

𝑑𝑉

𝑑𝑡
= ρSV − (η + α + μ)V, 

with the initial conditions  

𝑆(0) = 𝑆0 , 𝐸(0) = 𝐸0 , 𝐼(0) = 𝐼0 , 𝑅(0) = 𝑅0 ,

𝑉(0) = 𝑉0,

and 

𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) + 𝑉(𝑡), 

where 𝑁(𝑡) is the total population size of the region 

at time 𝑡. 

Here, 𝑆(𝑡) , 𝐸(𝑡) , 𝐼(𝑡) , 𝑅(𝑡) , and 𝑉(𝑡) 

represent the number of individuals in the 

susceptible, exposed, infected, recovered, and 

vaccinated compartments, respectively, at time 𝑡 . 

Table 1 provides an interpretation of the parameters 

that were used. 

Now divide each differential equation in 

equation (2) by N and take S/N=s, E/N=e, I/N=i, 

R/N=r, V/N=v, and the parameter Λ/N=λ, then from 

equation (2), we get, 

𝑑𝑆

𝑑𝑡
= Λ − 𝛽𝑠𝑖 − 𝜌𝑠𝑣 − 𝜇𝑠, 

𝑑𝐸

𝑑𝑡
= 𝛽𝑠𝑖 − (𝜎 + 𝜇)𝑒, 

𝑑𝐼

𝑑𝑡
= σe − (γ + μ + ε)i,           (3) 

𝑑𝑅

𝑑𝑡
= γi + ηv − μr, 

𝑑𝑉

𝑑𝑡
= ρsv − (η + α + μ)v, 

with the initial conditions 

𝑠(0) = 𝑠0 , 𝑒(0) = 𝑒0 , 𝑖(0) = 𝑖0 , 𝑟(0) = 𝑟0 ,

𝑣(0) = 𝑣0,

and  

𝑠 + 𝑒 + 𝑖 + 𝑟 + 𝑣 = 𝑛. 

Solutions of non-negativity and boundedness 

Theorem. Let 𝑆 = {𝑿 = (𝑆, 𝐸, 𝐼, 𝑅, 𝑉) ∈

𝔑 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑋𝑘 ≥ 0 𝑎𝑛𝑑 ∑ 𝑋𝑘 ≤ 𝐿5
𝑘=1 }  be the

closed set, then 𝑆  is non-negative and bounded 

under the system (2), and solution 𝑿(𝑡) ∈ 𝑆 exists 

globally in time for the initial conditions 𝑿(0) ∈ 𝑆. 

Proof. Let Θ𝑘 , where 𝑘 = 1,… ,6  be defined as

follows 

Θ𝑘 = {∈ 𝑆 ∶  𝑋𝑘 = 0 for 𝑘 = 1,2,3,4,5,6},

and 

Θ6 = {𝑿 ∈ 𝑆 ∶  ∑ 𝑋𝑘 = 𝐿6
𝑘=1 }, 

then it is obvious that 𝜕𝑆 = ⋃ Θ𝑘
6
𝑘=1 . 

In our study, we examine boundary segments, each 

labeled Θ𝑘 , where 𝑘 = 1,2,3,4,5. Associated with
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each of these segments is an inward normal vector, 

referred to as 𝒏𝑘 . Each 𝒏𝑘  is essentially a 6-

dimensional vector, structured such that all 

components are zero except for the 𝑘th component, 

which equals 1 and this can be represented as 𝑛𝑘 =

𝜉𝑘 = (0,0,1,0,0,0) , with the position of the '1'

shifting based on the value of 𝑘  and 𝑛6 =

(−1,−1,−1,−1,−1,−1) . Here, 𝑛  signifies a 

vector as a positive linear combination of all the 

inward normals corresponding to the boundary 

segments. If we can show that 𝒏 ∙ 𝑿(𝑡) ≥ 0, then 

our proof is complete. Thus, for 𝑘 = 1,2,3,4,5 we 

get,  

𝜉1 ⋅ 𝑿′ = Λ ≥ 0 for 𝑿 ∈ Θ1,

𝜉2 ⋅ 𝑿′ = ρ𝑋1 ≥ 0 for 𝑿 ∈ Θ2,

𝜉3 ⋅ 𝑿′ = α𝑋2 ≥ 0 for 𝑿 ∈ Θ3,

𝜉4 ⋅ 𝑿′ = β𝑋1 + 𝜎𝑋3 ≥ 0 for 𝑿 ∈ Θ4,

𝜉5 ⋅ 𝑿′ = η𝑋2 + 𝛾𝑋4 ≥ 0 for 𝑿 ∈ Θ5,

Since ∑ 𝑋𝑘 = 𝐿6
𝑘=1 , then we have, 

𝑑𝑁

𝑑𝑡
= Λ − 𝜇𝑁 − 𝜀𝑋4,

Consequently, on Θ6, where 𝑁 = 𝐿, then we get,

𝜉6. 𝑿
′ = −Λ + 𝜇𝐿 + 𝜀𝑋4 ≥ 0.

Since 𝑆  is positively invariant, our proof is 

complete.  

Remark: The solution 𝑿(𝑡) ∈ 𝑆 exists for the close 

of the initial conditions 𝑿0 ∈ 𝑆.

Now we are going to develop a few 

fundamental results in the next section, which will 

be utilized throughout the rest of the analysis. 

Stability and analysis of the model 

Endemic equilibrium point (EEP) 

An infectious disease's steady state in a 

population can be represented by its endemism 

equilibrium point, which is a crucial concept in 

epidemiology. The number of infected persons in a 

group stays constant throughout time, indicating that 

the illness is neither expanding nor dying out. This 

situation is called an endemic equilibrium point. 

An essential factor in the development of 

the SEIR-V model was the presence of an endemic 

equilibrium point. For example, illness persistence 

and endemic equilibrium might occur in a 

population if the vaccination rate falls below a 

specific threshold. 

In order to compute the point of endemic 

equilibrium of equation (3), we set 

𝑑𝑠

𝑑𝑡
=

𝑑𝑣

𝑑𝑡
=

𝑑𝑒

𝑑𝑡
=

𝑑𝑖

𝑑𝑡
=

𝑑𝑟

𝑑𝑡
= 0.

Then, we obtain the following system of equations: 

Λ − 𝛽𝑠𝑖 − 𝜌𝑠𝑣 − 𝜇𝑠 = 0, 

𝛽𝑠𝑖 − (𝜎 + 𝜇)𝑒 = 0, 

σe − (γ + μ + ε)i = 0,           (4) 

γi + ηv − μr = 0, 

ρsv − (η + α + μ)v = 0, 

By solving these equations in (4), we obtain the 

endemic equilibrium (EE), 

𝑠 =
(𝜇+𝜎)(𝜀+𝛾+𝜇)

𝛽𝜎
, 

𝑒 =
Λ𝛽𝜎−𝜀𝜇2−𝜀𝜇𝜎−𝛾𝜇2−𝛾𝜇𝜎−𝜇3−𝜇2𝜎

𝛽𝜎(𝜇+𝜎)
, 

𝑖 =
Λ𝛽𝜎−𝜀𝜇2−𝜀𝜇𝜎−𝛾𝜇2−𝛾𝜇𝜎−𝜇3−𝜇2𝜎

𝛽(𝜇+𝜎)(𝜀+𝛾+𝜇)
,       (5) 

𝑟 =
γ(Λ𝛽𝜎−𝜀𝜇2−𝜀𝜇𝜎−𝛾𝜇2−𝛾𝜇𝜎−𝜇3−𝜇2𝜎)

𝛽𝜇(𝜇+𝜎)(𝜀+𝛾+𝜇)
, 

0, 

Therefore, endemic equilibrium point (EEP) is 

𝐸 =

(

  
 

(𝜇+𝜎)(𝜀+𝛾+𝜇)

𝛽𝜎
,
Λ𝛽𝜎−𝜀𝜇2−𝜀𝜇𝜎−𝛾𝜇2−𝛾𝜇𝜎−𝜇3−𝜇2𝜎

𝛽𝜎(𝜇+𝜎)
,

Λ𝛽𝜎−𝜀𝜇2−𝜀𝜇𝜎−𝛾𝜇2−𝛾𝜇𝜎−𝜇3−𝜇2𝜎

𝛽(𝜇+𝜎)(𝜀+𝛾+𝜇)
,

γ(Λ𝛽𝜎−𝜀𝜇2−𝜀𝜇𝜎−𝛾𝜇2−𝛾𝜇𝜎−𝜇3−𝜇2𝜎)

𝛽𝜇(𝜇+𝜎)(𝜀+𝛾+𝜇)
, 0 )

  
 

. 

(6) 

The next step is to demonstrate the 

consequences of the fundamental reproduction 

number and examine the stability of the equilibrium 

points. 

Diseases free equilibrium analysis 

An important idea in the study of infectious 

diseases is the disease-free equilibrium. It sheds 

light on the circumstances that allow for the 

complete eradication of a disease from a population. 

We can forecast how an epidemic will behave in the 

long run and assess the efficacy of various 

management strategies by studying the stability of 

the disease-free equilibrium. 
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Consider the disease free equilibrium is 𝐸0 =

(
Λ

𝜇
, 0,0,0,0), and the vaccination-only equilibrium is

𝑉0 =

(
𝛼+𝜂+𝜇

𝜎
, 0,0,

𝜂(Λ𝜎−𝛼𝜇−𝜂𝜇−𝜇2)

(𝜇𝜎(𝛼+𝜂+𝜇))
,
𝜂(Λ𝜎−𝛼𝜇−𝜂𝜇−𝜇2)

(𝜎(𝛼+𝜂+𝜇))
).

Then we express the Jacobian matrix of the system 

equation (3) as  

𝐽 =

[
 
 
 
 
−𝛽𝑖 − 𝜇 − 𝜌𝑣 0 −𝛽𝑠 0 −𝜌𝑠

𝛽𝑖 −𝜇 − 𝜎 𝛽𝑠 0 0
0 𝜎 𝑎 0 0
0 0 𝛾 −𝜇 𝜂
𝜌𝑣 0 0 0 𝑒 ]

 
 
 
 

, 

where 𝑎 = −𝜀 − 𝛾 − 𝜇, and  𝑒 = 𝛼 − 𝜂 − 𝜇 + 𝜌𝑠. 

We can now compute the Jacobian matrix 𝐽 at 𝐸0,

that is,  

𝐽𝐸0
=

[
 
 
 
 
 
 −𝜇 0 −

Λ𝛽

𝜇
0 −𝜌𝑠

0 −𝜇 − 𝜎
Λ𝛽

𝜇
0 0

0 𝜎 𝑎 0 0
0 0 𝛾 −𝜇 𝜂
𝜌𝑣 0 0 0 𝑏 ]

 
 
 
 
 
 

, 

where 𝑏 =
Λ𝜌

𝜇
− 𝛼 − 𝜂 − 𝜇. 

Now solving the characteristics equation, we get, 

𝜆1 = −𝜇 , 𝜆2 =
Λ𝜌−𝛼𝜇−𝜂𝜇−𝜇2

𝜇
, 𝜆3 =

−𝜀𝜇−𝛾𝜇−2𝜇2−𝜇𝜎−√4Λ𝛽𝜇𝜎+𝐶

2𝜇
, and 

𝜆4 =
−𝜀𝜇−𝛾𝜇−2𝜇2−𝜇𝜎+√4Λ𝛽𝜇𝜎+𝐶

2𝜇

where 𝐶 = 𝜀2𝜇2 + 2𝜀𝛾𝜇2 − 2𝜀𝜇2𝜎 + 𝛾2𝜇2 −

2𝛾𝜇2𝜎 + 𝜇2𝜎2.

The values of the model parameters have a 

significant impact on the stability of the disease-free 

equilibrium point. An epidemic could break out 

under such circumstances if any of the eigenvalues 

have a positive real portion, indicating that the 

equilibrium is unstable. Therefore. 𝜆1  is stable

(negative real part), 𝜆2  can be either stable or

unstable, depending on the parameter values. If 

Λ𝜌 > 𝛼𝜇 + 𝜂𝜇 + 𝜇2, it will have a positive real part,

indicating instability, 𝜆3  stability depends on the

sign of their real parts. If the term inside the square 

root is less than the square of the other terms, they 

may have negative real parts and thus be stable. If 

not, they may be unstable, similarly for 𝜆4.

Basic reproduction number 

The concept of the basic reproduction number, 

denoted as ℛ0, holds a pivotal role in the field of

epidemiology, particularly in the context of 

infectious disease modeling and threshold analysis. 

This fundamental parameter has a rich historical 

lineage, with its origins rooted in the 

groundbreaking contributions of eminent scientists 

such as Alfred Lotka and Ronald Ross. Alfred 

Lotka's pioneering work in mathematical biology 

laid the groundwork for understanding population 

dynamics, providing valuable insights into the 

potential for disease spread. On the other hand, Sir 

Ronald Ross's pioneering research on malaria 

transmission not only earned him a Nobel Prize but 

also advanced our comprehension of how infectious 

diseases can propagate within populations. These 

foundational contributions set the stage for the 

formalization and application of ℛ0  by George

MacDonald in 1952, marking a crucial milestone in 

the field of modern epidemiology [27]. 

The basic reproduction number, often referred to as 

the basic reproductive ratio or, occasionally, the 

basic reproductive rate, is a key parameter in 

epidemiological research. Its primary function is to 

assess whether an infectious disease has the 

potential to accelerate through a population. The 

importance of ℛ0  lies in its role as a threshold

parameter, determining the fate of an infectious 

disease outbreak within a community. As described 

in the literature, two critical scenarios emerge: 

Theorem [28]. 

1. when ℛ0 < 1 , it signifies that the disease is

unlikely to cause an epidemic and will likely die out. 

2. while an ℛ0 > 1 indicates the potential for an

epidemic to occur, or for the disease to persist within 

the population.  

The fundamental reproduction number ℛ0

can be calculated analytically in the setting of the 

considered model, which includes the disease-free 

equilibrium (DFE) expressed as 

(𝑆0, 𝑉0, 𝐸0, 𝐼0, 𝑅0) ≡ (
Λ

𝜇
, 0,0,0,0) . As previously 

shown in studies [25, 26, 29], this is performed using 

a well-established strategy known as the next-

generation matrix method. 

The following relation ℛ0 = 𝜆(𝐹𝑉−1) ,

where denotes the spectral radius of the matrix 

𝐹𝑉−1  [25, 26, 29], is the key to determining ℛ0 .

This mathematical technique precisely quantifies 

influenza virus potential for transmission 

throughout a population. It gives a fundamental 

468



Raihen M N et al. / Microbes and Infectious Diseases 2024; 5(2): 463-478

understanding of the disease's dynamics and impact, 

giving researchers and policymakers vital insights 

into how the virus may spread. 

For our SEIR-V model, let 

[
0 𝛽
0 0

], 

and 

𝑉 = [
𝜎 + 𝜇 0
−𝜎 𝛾 + 𝜇

]. 

Here, 𝐹  captures the production of new 

infections from the 'Infectious' compartment 

influencing both 'Susceptible' and 'Vaccinated' 

individuals (though we focus on 'Susceptible' for the 

NGM), and 𝑉 captures the transition rates out of the 

'Exposed' and 'Infectious' compartments, and other 

critical characteristics that improve our 

understanding of the progression of the infection.  

Therefore, the inverse of 𝑉, we get 

𝑉−1 = [

1

𝜎+𝜇
0

𝜎

(𝜎+𝜇)(𝛾+𝜇)

1

𝛾+𝜇

]. 

The NGM is then calculated as 𝐹𝑉−1. The

largest eigenvalue of this matrix gives the basic 

reproduction number ℛ0. This calculation involves

matrix multiplication and finding the inverse of 

matrix 𝑉, followed by computing the eigenvalues of 

the resulting matrix. So, we have 

|𝐹𝑉−1 − 𝜅𝐼| = |
𝛽𝜎

(𝜎+𝜇)(𝛾+𝜇)
0

0 0
| = 0. 

Therefore, the spectral radius of 𝐹𝑉−1 is

ℛ0 = 𝜆(𝐹𝑉−1) =
𝛽𝜎

(𝜎+𝜇)(𝛾+𝜇)
.              (7) 

Estimation of parameters 

A numerical solution to a first-order 

ordinary differential equation (ODE) is used to 

predict the disease's transmission throughout a 

population in this study. Because of its outstanding 

precision and reliability, the fourth-order Runge-

Kutta method (RK4), which is implemented in 

Python, is utilized in this work to solve such 

ordinary differential equations (ODEs). To provide 

a true representation of the population and illness 

metrics, it is crucial to mention that all variables and 

parameters in this population model are non-

negative by definition. 

In order to get the model's predictions in 

line with the real data, fitting techniques like the 

least-squares method, which is improved by Latin 

hypercube sampling, are used to calibrate the 

parameters. If we want the model to capture the 

dynamics of diseases in the actual world, we need to 

go through this procedure. In this calibration, the 

Python approach is crucial because it finds the best 

values for the model parameters, which include 

infection rates, vaccination rates, recovery rates, and 

other disease-specific characteristics. The study's 

future numerical simulations are based on the 

ideally estimated parameters, which are reported in 

Table 1. These parameters are important to the 

model's fidelity. The RK4 algorithm for solving 

first-order differential equations is presented in 

Algorithm 1. 

Applications and numerical analysis 

Using the fourth-order Runge-Kutta 

method, we attempt to solve the nonlinear 

differential system given by equation (2) in this 

work. Table 2 shows the parameter settings that 

formed the basis of our analysis. These values were 

derived from previous research [30, 31]. The models 

were run in Python with a world population of 5.50 

billion approximately. Our model's parameters are 

fine-tuned to a rate per 1,000 people every day. 

Parameter estimates for the world's population are 

presented in Table 2. 

Figure 2 displays the fractions of various 

demographic groups throughout time, illustrating 

the results of numerical simulations. Blue represents 

those who are susceptible, yellow those who have 

been exposed, red those who have been infected, 

cyan those who have been vaccinated, and green 

those who have recovered. The simulation shows 

that the number of sensitive individuals is reducing 

with time, which means that more and more people 

are getting exposed to the virus and getting infected. 

Based on this pattern, a rapid breakout could be 

imminent. The recovery rate is not proportional to 

the rise in the number of infected and vaccinated 

patients, which is an intriguing observation. When 

comparing this group to the others, it becomes clear. 

Equation (7) shows that the basic reproduction 

number ℛ0  is 0.00000478, which is less than 1,

based on the parameters given in Table 2. This 

means that an epidemic is less likely to occur under 

these conditions. Nevertheless, keep in mind that the 

values picked at random for 𝛾  and 𝜌  make these 

results not definitive. A thorough sensitivity 

analysis of the model is required when trying to 

predict with any degree of accuracy how these 
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parameters would change and how they would 

influence the model's stability. 

Sensitivity analysis 

One important step in using modeling to 

understand the dynamics of infectious diseases is to 

do a sensitivity analysis. With this information, we 

can better understand how different parameter 

values affect the course of the disease and maybe 

develop ways to stop it in its tracks. Applying the 

model parameters listed in [32] with the values from 

Table 2, we will now conduct a sensitivity analysis 

of the fundamental reproduction number, ℛ0 , in

respect to these parameters. As seen in equation (7), 

we may see this in action by determining ℛ0 's

sensitivity index relative to the parameter 𝛽. 

Thus, 

𝜁𝛽
ℛ0 =

𝜕ℛ0

𝜕𝛽
×

𝛽

ℛ0
, 

 =
𝜎

(𝜎+𝜇)(𝛾+𝜇)
×

(𝜎+𝜇)(𝛾+𝜇)

𝜎
= 1. 

Also, we determine the total sensitivity index in a 

similar fashion, 

𝜁Λ
ℛ0 = 0,

𝜁ρ
ℛ0 = 0,

𝜁μ
ℛ0 = −

𝜎+𝛾+2𝜇

(𝜎+𝜇)(𝛾+𝜇)
= −

1

𝛾+𝜇
−

1

𝜎+𝜇

 = −1.4, 

𝜁η
ℛ0 = 0,

𝜁σ
ℛ0 = −

𝛾+𝜇

(𝜎+𝜇)(𝛾+𝜇)
= −

1

𝜎+𝜇
= −0.8, 

𝜁γ
ℛ0 = −

𝜎+𝜇

(𝜎+𝜇)(𝛾+𝜇)
= −

1

𝛾+𝜇
= −0.6, 

𝜁α
ℛ0 = 0.

Here are the outcomes that follow from the 

index analysis: From 𝜁𝛽
ℛ0 = 1, it is clear to us that a

10% increase in the exposure rate 𝛽 would lead to a 

10% increase in, which might cause an epidemic to 

ensue. Alternatively, 𝛽  were to reduce by 10%, 

there would be a corresponding decrease in, which 

would help control the sickness of seasonal flu virus. 

Accordingly, controlling the spread of infection 

requires lowering the exposure rate. The World 

Health Organization and other government agencies 

have called for social distance and house quarantine 

as public health measures to combat the influenza 

virus, and this reasoning supports their 

recommendations. 

In addition to that, 𝜁σ
ℛ0  implies that the

value is negative, we may deduce that a 10% 

increase in 𝜎  results in an 8% decrease in ℛ0 . In

order to stop the spread of the disease, it is necessary 

to vaccinate the affected individual more often. 

Similarly, 𝜁μ
ℛ0 , and 𝜁γ

ℛ0  both values are negative, so

in order to prevent the influenza virus, it is necessary 

to raise both the recovery rate of non-vaccinated 

individuals and the death rate as a result of infected, 

as raising the parameters has a negative influence on 

ℛ0.

Case study: Results and Discussion 

During the 32nd week of epidemiology, 

virological data was provided for analysis by 18 

African countries. Out of 1,026 specimens collected 

during week 32, 1,011 were tested for influenza in 

Ghana (Data source: 

https://www.who.int/tools/flunet).  

A total of 132 specimens, or 13.06%, tested 

positive for influenza virus in Epiweek 32; 81 of 

these specimens were influenza A and 51 were 

influenza B. Influenza A (H1N1) pdm09, influenza 

A (H3), influenza A (subtyping not conducted), 

influenza B (lineage not specified), influenza B 

(Victoria), and 38 instances of influenza A (H1N1) 

pdm09 were among the influenza viruses found. 

From weeks 1 to 32, the WHO AFR 

influenza laboratory network measured 67,285 

specimens; 5,319 of them, or 7.91%, proved positive 

for influenza virus. The infection-related mortality 

rate in Ghana is significantly more than the global 

average, standing at 6.7% as of April 10, 2023. 

Inadequate testing kits and treatment facilities could 

make the nation's response to a pandemic more 

challenging. 

Based on the country's current situation, we 

estimated the parameters in Table 3 after evaluating 

the scenario using the model provided in equation 

(3). According to Table 3, the reproduction number 

ℛ0. is 13.4 >1, which is indicative of a severe and

extensive problem. The continuous nature of the 

event and the paucity of testing sites across the 

country might often make actual data unavailable, 

resulting in the estimation of few parametric values 

for computation [33, 34]. 

There has been a dramatic decline in the 

susceptible population and a corresponding increase 

in the infected population, as seen in Figure 3. It is 

also possible to see, with some effort, that the 

number of infected individuals reaches a maximum 

at about 20 days and then starts to fall. The amount 

of the isolated (cyan) and recovered (magenta) 

populations is also fairly tiny when compared to the 
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infected population curve. We can confidently say 

that the virus's spread will be rapid. A high number 

of infected individuals in a very short length of time 

could result from the situation rapidly spiraling out 

of control if adequate precautions are not 

implemented which is why we need to act 

immediately to mitigate its effects. 

The virological data provided by the WHO 

is displayed in Figure 4. Figure 4 shows that there 

were 1,011 positive results for influenza testing out 

of 1,026 specimens collected in Ghana. In Epiweek 

32, 132 out of 1011 specimens tested positive for 

influenza virus, accounting for 13.06% of the total. 

Of them, 81 were influenza A types and 51 were 

influenza B kinds. Figure 4 also shows that out of 

the total number of influenza viruses discovered, 38 

were influenza A (H1N1) pdm09, 35 were influenza 

A (H3), 8 were influenza A (subtyping not 

conducted), 31 were influenza B (lineage not 

determined), and 20 were influenza B (Victoria). 

Between weeks 1 and 32, the AFR influenza 

laboratory network of the World Health 

Organization screened 67,285, or 67,563 specimens, 

for the influenza virus. Out of these, 5,319 tested 

positive, giving a positivity rate of 7.91%. 

We can proceed with our analysis after we 

complete the phase where we just examine the effect 

of by selecting 𝛽 = 0.9234  (representing 92% of 

the infected population), 𝛽 = 0.7089, and then up 

to 𝛽 = 0.1 . Increasing the number of testing and 

treatment facilities is the only way to decrease the 

infected population, which can be achieved by 

increasing the vaccination rate, as demonstrated by 

the curves in Figure 5. 

The lack of an operational healthcare 

system in Ghana means that a lot of information is 

missing. The government has not been able to 

provide a sufficient amount of testing spaces, but 

they are still trying to find a solution. Therefore, it is 

a tough undertaking just to identify sick people, 

much less isolate as well as vaccinate them. Also, 

this highly populous nation has inadequate treatment 

facilities and equipment, so a huge number of 

diseases happening at once could have disastrous 

consequences. Isolating most of them gets 

increasingly challenging. We have determined that 

increasing the pace of vaccination, the number of 

treatment facilities, and testing can contain the 

epidemic by analyzing the curves in Figure 5. 

Figure 6 shows the results of a 160-day 

SEIRV model simulation, showing how the 

vaccinated population grows under five different 

vaccination rates (𝜌)  from 0.05 to 0.459 

(representing 46% of the vaccinated population). A 

more quick and broad vaccination effort is indicated 

by higher 𝜌 values, which cause the peaks of each 

curve to be earlier and larger, reflecting the greatest 

reach of vaccination at different rates. Post-peak 

drops indicate that the number of people at risk is 

decreasing or that vaccine immunity is starting to 

wear off. The graphic comparison highlights the 

significance of effective vaccine distribution in 

reducing the transmission of infectious illnesses and 

the crucial role that vaccination speed plays in 

public health outcomes. 

Given all parameters from Table 3 set to 

fixed levels, Figure 7 illustrates that when the non-

vaccinated/natural recovery rate grows, the number 

of infected populations is declining. Here, the 

natural recovery rate may be thought of as the 

population's inherent immune system. A high value 

may suggest a positive outcome in this epidemic if 

the majority of the infected individuals have a strong 

immune system, either naturally or intentionally 

generated (by medicine or vaccine). On the other 

hand, people whose immune systems aren't as strong 

take more time to get well. Thus, educating the 

public on the importance of a balanced diet, regular 

exercise, and mental wellness is a crucial step in 

containing the seasonal flu-virus. 

Based on our findings, it seems that 

additional diagnostic and treatment facilities for the 

affected population, social isolation of the 

community, and improved natural immunity or 

vaccine could be necessary to contain the seasonal 

influenza virus. 
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Table 1. Description of model parameters 

Notation Interpretations 

Λ Birth rate 

𝛽 Transmission rate from 𝑆 to 𝐼 class 

𝜌 Vaccination rate of 𝑆 population 

𝜇 Natural death rate 

𝜎 Rate of progression from 𝐸 to 𝐼 

𝛾 Recovery rate from 𝐼 class 

𝜂 Loss of vaccine-induced immunity rate 

𝛼 Diseases-induced death rate 

𝑁 Total population 

Table 2. Initial conditions and parameters for the global 

Parameters Value References 

Λ 60 [30] 

𝛽 0.00001625 estimated 

𝜌 0.005 estimated 

𝜇 0.6725 [31] 

𝜎 0.578 estimated 

𝛾 0.8975 estimated 

𝜂 0.01 estimated 

𝛼 0.0000025 estimated 

Table 3. Initial conditions and parameters for Ghana 

Parameters Value References 

Λ 2.7 × 10−3 [30] 

𝛽 2 estimated 

𝜌 1.54 × 10−6 estimated 

𝜇 0.0148 [30] 

𝜎 1.02 [31] 

𝛾 0.132 estimated 

𝜂 0.084 [30] 

𝛼 1.02 [31] 

Figure 1. A diagrammatic representation of the transmission dynamics presents in the SEIR-V model 
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Figure 2. Over time, the dynamics of various population groups susceptible, exposed, infected, vaccinated, and 

recovered are represented through distinct curves. The blue line (Susceptible) decreases sharply at the beginning, 

indicating a rapid reduction in the number of individuals who are susceptible to infection. The yellow line 

(Exposed) shows the number of individuals who have been exposed to the infection and are in the incubation 

period. The red line (Infected) represents individuals who are actively infected and can transmit the disease to 

others; this peaks and then declines as the individuals either recover or die. The green line (Recovered) increases 

over time, indicating individuals who have recovered from the infection and have gained immunity. The cyan line 

(Vaccinated) shows the portion of the population that has been vaccinated over time. All data points for these 

curves are derived from the values presented in Table 2. 

Figure 3. Population dynamics in Ghana, including susceptible, exposed, infected, vaccinated, and recovered 

states, as experienced across time. Various shades of hue denote distinct demographics: The colors blue, yellow, 

red, cyan, and green represent different stages of infection and recovery. 
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Figure 4. Epicurve of influenza cases in WHO AFR countries, areas, and territories by influenza type from the 

WHO African region (WHO AFR) provided virological data. 

Figure 5. The dynamics of the infected population with and without increased vaccination, with purple 

indicating a large number of infected individuals becoming vaccinated and red indicating no vaccination. 

Figure 6. The dynamics of the vaccinated population demonstrate that greater rates lead to more rapid and 

extensive vaccination coverage in a population. 
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Figure 7. The rate of recovery of the diseased population according to 𝛾 dynamics. Potential effects on the 

seasonal flu situation as a result of a faster recovery rate in the non-vaccinated population are shown in this 

graphic. 

Algorithm 1. Introduces the RK4 algorithm, which is used to solve differential equations of first order. 

Discussion 

A highly successful method for predicting 

and controlling the condition of viral infections like 

seasonal influenza can be achieved by theoretical 

epidemic analysis, provided that the parameters can 

be approximated correctly. We modified the SEIR-

V model to reflect an epidemic by including the 

hospitalized-vaccination compartment for patients 

who have been diagnosed with an infection. Due to 

data limitations, the model's parameters were 

selected at random, with the most recent influenza 

data used to establish the assumptions. 

Simultaneously, we determine the fundamental 

reproduction number to ensure the system is stable. 

Table 2 was used to find that ℛ0 = 4.78 ×

10−6 which means that the system is stable. Present

conditions in Ghana are likely to cause the seasonal 

inluenza virus, according to our findings (ℛ0 > 1 in

Table 3). It is possible that our calculations may not 

accurately represent the parameter and value of zero 

because this is a continuous process that is prone to 
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fluctuations; this is one limitation of our work. In 

this infographic, we've highlighted how important 

vaccination patients and programs are for limiting 

the spread of the seasonal fluvirus in Ghana. The 

fact that the virus can incubate for a long time, 

leaving asymptomatic patients, and that it is still 

potent enough to spread even during this time makes 

it difficult to discover infected people. Therefore, 

the only way to make sure that no one gets sick is to 

put everyone on protection (i.e. Vaccination and 

quarantine). 

Another thing we have noticed is that the 

rates of recovery for both vaccinated and non-

vaccinated individuals help to reduce the infection. 

From what we can see, our epidemic paradigm was 

useful in predicting and controlling the seasonal flu 

outbreak in Ghana. Even limiting our analysis to 

Ghana, the resulting model and theoretical 

framework would be useful for any nation. It is our 

hope that this analysis will help the general 

population, policymakers, and the government 

better prepare for and respond to the spread of 

influenza. 
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