Original article

HIV screening among prospective blood donors who are negative for conventional screening methods in referral hospitals in Kebbi State Nigeria

Mohammed Bashar Danlami *,1,2, Aisha Abdullahi 2, Basiru Aliyu 1, Tajudeen Yahaya 3, Zaharaddin Muhammad Kalgo 1, Shuaibu Bala Manga 4

1- Department of Microbiology, Faculty of Science, Federal University Birnin Kebbi
2- Department of Microbiology, Faculty of Life Sciences, Kebbi State University of Science and Technology Aliero
3- Department of Biological Sciences, Faculty of Science, Federal University Birnin Kebbi
4- Department of Microbiology, Faculty of Science, Usman Danfodiyo University Sokoto

ABSTRACT

Background: Blood transfusion is a known risk factor for transmitting infectious diseases, including the human immunodeficiency virus, due to false negatives and false positives in HIV rapid diagnostic test results. This study determines the percentage of false negatives and positives among prospective blood donors in two major referral hospitals in Kebbi State, Northwest Nigeria. Method: A total of 900 sera were collected from potential blood donors from January to July 2020 in two general hospitals in Kebbi State. All donors were screened for HIV infection using Determine HIV-1/2, Uni-Gold, and STAT-PAK. The presence of viral antigen in the donor serum was tested using the p24 diagnostic technique. Data were analyzed using SPSS version 16. Descriptive statistics were used to determine frequencies and percentages. The chi-square test compared categorical variables. Result: Out of 900 blood donors, 27 (3%) were reactive to Determine HIV 1/2 and HIV-2. One-third (9) of the 27 reactives on Determine HIV 1/2 were non-reactives on Uni-Gold. The nine (1%) non-reactive on Uni-Gold were also non-reactive on STAT-PAK and p24 viral antigens. The 873 (97%) samples that were non-reactive on Determine HIV 1/2, Uni-Gold, and STAT-PAK were non-reactive on HIV p24 antigens. The result showed that one-third of the blood donors who were not positive on determination were false positives, as confirmed on Uni-Gold, STAT-PAK, and the Ultra HIV Ag–Ab p24 antigen ELISA. Conclusion: The results suggest that using a lone rapid technique for HIV diagnosis is not recommended. Hence, a double-blind strategy should reduce HIV endemicity and optimize blood safety.
illness has a near-100 percent death rate [3]. In the absence of effective treatment intervention, infection prevention is the principal method for HIV/AIDS control [3,4].

Blood transfusion is a known risk factor for infectious disease transmission, including HIV [5]. The prevalence of seroconversion following transfusion of HIV-infected blood is greater than 90% in HIV infection [6,7]. The danger of getting HIV via a blood transfusion was practically removed in industrialized nations with the advent of the HIV antibody diagnostic test [5]. The danger was further decreased by developing susceptible point-of-care diagnostic tests [3,8].

HIV/AIDS control depends on an accurate laboratory HIV infection diagnosis [9,10]. Rapid HIV-1/2 antibody-based point-of-care (POC) tests are evolving and making HIV testing feasible in the developing world [10]. Despite this, screening techniques can produce false-negative results for acute HIV infection and false-positive results for HIV vaccine recipients who are not sick and newborns who have passive maternal antibodies produced by mothers who are HIV-positive [11,12]. To control the infection, it is crucial to apply the molecular approach in addition to the rapid HIV-1/2 antibody-based tests among potential blood donors [13,14].

In Nigeria, the demand for blood and blood products is high due to road traffic accidents, surgical blood loss, and anaemia [1]. Despite the demands, blood transfusion programmes use a single antibody-based test to screen donor blood for HIV infection. To prevent the transfusion of contaminated blood and to limit the spread of HIV/AIDS in the community, screening techniques for blood donors must be continuously reviewed and evaluated. The objectives of this study were to assess and determine the percentage of false negatives and positives among prospective blood donors in two major referral hospitals in Kebbi State, northwest Nigeria.

Materials and methods

Study design

The present study included 900 prospective blood donors, males between the ages of 21 and 60 from January to July 2020 at General Hospital Yauri and Sir Yahaya Memorial Hospital Birnin Kebbi, Kebbi State. The study did not include children, pregnant women, and subjects with chronic diseases.

Sample collection

The prospective blood donors were screened for HIV using conventional HIV rapid antibody-based test kits. The volunteers were invited into the laboratory, and five millimetres (5 ml) of the blood was aseptically collected using a sterile syringe and transferred into a clean EDTA container. The blood samples were screened for HIV infection using HIV rapid test kits Determine® HIV 1/2 strips (Alere Medical Co. Ltd., Chiba, Japan). STAT-PAK (Chembio Diagnostic Systems, NY, USA) and Uni-Gold kit (Trinity Biotech, Wicklow, Ireland) were used as a tiebreaker and for confirmation. All presumed unreactive samples from conventional HIV rapid antibody-based test kits were tested for the presence of p24 viral antigen using ULTRA HIV Ag–Ab p24 ELISA. Questionnaires were also administered to the prospective blood donors to obtain their demographic characteristics, blood donation history, HIV knowledge, awareness/risk, and practices. Ethical approval was obtained from the ethics and research committees of the Kebbi State Ministry of Health and the two general hospitals used in the study. Informed consent was obtained from the prospective blood donors.

Rapid HIV screening using Determine® HIV 1/2 strips

The conventional HIV screening method was conducted using the Determine® HIV 1/2 strips (Alere Medical Co. Ltd., Chiba, Japan) to detect HIV type 1 (HIV-1) and (HIV-2) antibodies within 15 minutes by using 50 µl of serum or plasma, according to the manufacturers. The strip has two horizontal lines labelled "control" and "patient" bars. A single red line on the strip at position C (control) indicated a reasonable control. A red line in the patient bar indicated a positive result for HIV-1 or HIV-2, whereas its absence signified a negative result.

Confirmation test with Uni-Gold and STAT-PAK

The positive samples were subjected to a confirmatory test using the Uni-Gold kit (Trinity Biotech, Wicklow, Ireland). According to the manufacturers, a sample with a negative result after utilizing Uni-Gold was verified using a STAT-PAK (Chembio Diagnostic Systems, NY, USA). Briefly, blood is collected from the punctured finger using a pipette, and then two drops are placed into the sample port of the Uni-gold device. Subsequently, two drops of running buffer were added to the
sample port. The result was red after ten minutes. A "reactive" result indicates that the person who supplied the blood is HIV-positive, whereas a "non-reactive" result indicates that they are HIV-negative. The STAT-PAK was employed as a tiebreaker. It is a rapid point-of-care assay for detecting HIV-1 and HIV-2 antibodies in fingerstick whole blood, whole venous blood, serum or plasma. The interpretation of STAT-PAK is similar to that of Uni-Gold.

ULTRA HIV Ag–Ab p24 antigen ELISA

The unreactive samples from conventional antibody-based HIV rapid test kits (Determine® HIV 1/2, Uni-Gold, and STAT-PAK) were tested for p24 antigens. The samples were screened for the presence of p24 viral antigen using an ELISA kit (Greenscreen Ultra HIV Ag–Ab), and the procedure was followed according to the test kit. Greenscreen Ultra HIV Ag-Ab is a qualitative enzyme immunoassay kit for detecting HIV p24 antigen and antibodies to HIV-1 (groups M and O) and HIV-2. Briefly, three wells were marked: negative control, positive control, and blank. 20 µl of biotin conjugate was added into each well except the blank one, and 100 µl of each positive and negative control was added into the marked wells. 100 µl of the sample was added to the well-marked specimen wells, leaving the blank empty. The plates were washed five times with a diluted wash buffer after being incubated at 37 °C for 1 hour. Following that, each well except the blank received 100 µl of horse reddish peroxidase (HRP) conjugate. After another round of washing, the plate was covered and incubated for 30 minutes at 37°C. Each well received a 50 µl volume of chromogen solutions A and B. The plates were read with a plate reader. The results were calibrated with the blank at 450 nm absorbance for 10 minutes after stopping the reaction with 50 µl of stop solution.

Statistical analysis

Data were analyzed using SPSS version 16 (SPSS Inc., Chicago, IL, USA). Descriptive statistics were used to determine frequencies and percentages. The study used the chi-square test to compare categorical variables. Spearman's rank correlation coefficient investigated the significance of the correlation between variables. All tests were at the 5% level of statistical significance.

Result

Overall, 900 out of 1,239 individuals were tested for HIV between January 2020 and July 2020 (Figure 1). The highest frequency of volunteers is within the age group of 31–35 years (24.4%), followed by individuals within the age group of 26–30 years (23%), while the least was aged 46 years and above (8%) (Table 1). Of the 900 blood donors, 27 (3%) were reactive to Determine HIV 1/2, two-thirds were reactive on Uni-Gold, while nine were non-reactive and reported negative (Table 2). The nine (1%) non-reactive on Uni-Gold were also non-reactive on STAT-PAK. All nine non-reactive samples on Uni-Gold and STAT-PAK were also not reactive using the p24 viral antigen. In addition, 873 (97%) samples that were non-reactive on Determine HIV 1/2, Uni-Gold, and STAT-PAK were non-reactive on HIV p24 antigens.

From the knowledge of respondents concerning HIV/AIDS, most of the respondents (72%) have enough awareness about HIV/AIDS and its transmission routes and believe that HIV/AIDS is not curable. Most of the respondents (73%) were not at risk of HIV infection. In addition, only 27 percent of the respondents are at high risk of HIV infection. The result showed that most of the study respondents (61%) observed good practices regarding HIV infection (Table 3). The bivariate correlations between respondents' knowledge and educational level and their practices and risk of HIV/AIDS show that respondents with moderate educational levels and knowledge were likely to have positive practices regarding HIV/AIDS and a lower risk of infection (Table 4).
Table 1. Demographic characteristics of the respondent’s blood donors (n = 900).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Category</th>
<th>Frequency (f)</th>
<th>Percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>21-25</td>
<td>129</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>26-30</td>
<td>207</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td>31-35</td>
<td>219</td>
<td>24.4</td>
</tr>
<tr>
<td></td>
<td>36-40</td>
<td>153</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>41-45</td>
<td>120</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>46-60</td>
<td>72</td>
<td>8.0</td>
</tr>
<tr>
<td>Education level</td>
<td>SSCE</td>
<td>159</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>OND/COE</td>
<td>351</td>
<td>39.3</td>
</tr>
<tr>
<td></td>
<td>HND/BSc</td>
<td>273</td>
<td>30.3</td>
</tr>
<tr>
<td></td>
<td>MSc</td>
<td>42</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>PHD</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>75</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Table 2. HIV knowledge, awareness, and practices of the prospective blood donors (n = 900).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Yes</th>
<th>No</th>
<th>I do not know</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freq.</td>
<td>%</td>
<td>Freq.</td>
</tr>
<tr>
<td>Knowledge of HIV/AIDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>576</td>
<td>64</td>
<td>315</td>
</tr>
<tr>
<td>Risk of HIV/AIDS infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>243</td>
<td>27</td>
<td>558</td>
</tr>
<tr>
<td>Good practice regarding HIV/AIDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>549</td>
<td>61</td>
<td>333</td>
</tr>
</tbody>
</table>

Table 3. HIV-1/2 antibody screening based on conventional techniques and the p24 viral antigen test (n = 900).

<table>
<thead>
<tr>
<th>HIV status</th>
<th>HIV 1/2 (Determine®)</th>
<th>Uni-Gold™</th>
<th>STAT-PAK™</th>
<th>p24 antigen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f</td>
<td>(%)</td>
<td>F</td>
<td>(%)</td>
</tr>
<tr>
<td>Reactive</td>
<td>27</td>
<td>(3%)</td>
<td>18</td>
<td>(2%)</td>
</tr>
<tr>
<td>Non- Reactive</td>
<td>873</td>
<td>(97%)</td>
<td>873</td>
<td>(98%)</td>
</tr>
</tbody>
</table>

f = frequency; % = percent. Reactive = positive; non-reactive = negative.

Table 4. Associations between the respondent’s knowledge, educational level, practices, and risk of HIV/AIDS.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Educational Level</th>
<th>Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p-value</td>
</tr>
<tr>
<td>Practice</td>
<td>0.848**</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Risk</td>
<td>0.737**</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

**. The correlation is significant at the 0.01 level (2-tailed).
Discussion

The result from the study showed that 3% of the prospective blood donors were reactive on conventional rapid HIV diagnostic tests. In contrast, only two-thirds of the donors who were reactive to the conventional antigen were reactive to the p24 viral antigen [11, 15]. The study indicates one-third of false positive results when Determine® is used alone, as confirmed by Uni-Gold and STAT-PAK. This result is significantly higher than Osun's (0.43%) result but similar to the 2.92% found among blood donors using point-of-care diagnostics in resource-limited settings [16]. However, it was lower than the result recorded in prospective blood donors in Ile-Ife, Nigeria (5.9%) [17], and nearly a 5-fold increase among voluntary blood donors in Namibia [7]. The frequency of reactive antibodies among prospective blood donors in this study has nearly corresponded to the results reported by the WHO in HIV-endemic populations [18]. The findings from this study show the potential for false positive HIV test results in the subset of individuals who tested positive on Determine but negative on
Uni-Gold and STAT-PAK [11, 12, 19]. The false positive on Determine® indicates the possibility of cross-reacting antibodies such as HIV [19, 20]. These results showed the weakness of conventional rapid HIV test results compared with p24 antigen ELISA diagnostic test results in blood screening and surveillance testing [21, 22].

Previously, a cohort study on known HIV-positive patients tested with Determine® showed 100.0% sensitivity, following the manufacturer's claim. However, the current one was a study that focused on the screening for HIV among prospective blood donors. Hence, the Determine® technique's sensitivity was obtained based on a few positive cases confirmed by the p24 antigen test [15, 22]. The conventional screening technique with Uni-Gold confirmed only eighteen seropositive donors (i.e., 2% HIV seroprevalence). The inclusion of Stat-Pak as a tiebreaker kit resolved the discrepancy, as it confirmed 2% HIV seroprevalence [5, 15, 23]. The results suggest that a single HIV rapid diagnostic technique is not recommended in a high seroprevalence population because of the possibility of false positive and negative results [5, 6, 14, 15, 23]. The single HIV antibody test has the advantages of simplicity and cost-effectiveness for confirming infection. However, it falls short due to the risk of transfusing an antibody-negative donor unit during the window period of HIV infection [1, 16]. The absence of HIV infection among the prospective blood donors using the WHO-recommended two-test diagnostic technique (the conventional rapid test and the p24 antigen ELISA) raised confidence in the specificity of the blood before transfusion. Misdiagnosis of HIV can cause mental illness and public health repercussions and should thus be avoided to the extent possible [9, 10, 24].

Knowledge, practices, and risk studies are valuable tools deployed to assess the extent to which individuals adopt risk-free behaviours. The study found that the prospective blood donors were young, ranging in age from 26 to 35 years old [16, 26]. These findings are in line with previous results, where the most voluntary blood donors are youth in the age group of 18–32 years. This group has been discovered to be low-risk and more willing to donate blood in Nigeria and Africa [26, 27]. Overall, the knowledge, risk, and practice levels of respondents regarding HIV/AIDS were found to be positive. The findings agreed with a recent report by Dzah et al. among senior high school pupils [25], who observed that >60% of their study respondents had good knowledge of HIV/AIDS [25, 26]. Overall, the findings in the study confirm the level of exposure of blood donors to campaigns of awareness on HIV/AIDS. Knowledge and awareness have contributed to the preference of donors and patients to receive HIV-tested banked blood from their relatives for transfusion [3, 8, 9]. Moreover, the literacy level of the respondents could explain the findings of this current study, thereby suggesting a direct relationship between literacy level and the risk associated with blood donation in the high HIV seroprevalence population [27, 28]. That established reasons for a more rigorous approach to the system's effectiveness in educating and selecting prospective blood donors [22, 26].

In conclusion, conventional (serological) HIV rapid screening was conducted using Determine®, and confirmation was carried out using Unigold and Stat-Pak. The findings revealed that one-third of the blood donors who were not positive for Determine® were false negatives, as confirmed on Uni-Gold, STAT-PAK, and further evaluation using the Ultra HIV Ag–Ab p24 antigen ELISA. The study shows no statistically significant difference among the blood donors screened using the conventional and molecular ULTRA HIV Ag–Ab p24 antigen ELISA techniques. However, using a single rapid technique to screen for HIV among blood donors is not recommended due to the possibility of false negative results. Hence, a double-blind strategy should be adopted to reduce HIV endemicity and optimize blood safety.

Competing interests

The authors declare that they have no competing interests.

Funding

This study received no specific funding from public, commercial, or not-for-profit funding agencies.

References

2- Boasso A, Shearer GM, Chougnet C. Immune dysregulation in human immunodeficiency

8-Slev P. The status of laboratory testing for the diagnosis of HIV infection. MLO Med Lab Obs 2016;48(9):34, 6.

18-Buseri FI, Muhibi MA, Jeremiah ZA. Sero-epidemiology of transfusion-transmissible

