Short report

First report of *Ochrobactrum anthropi* isolated from bloodstream infection in Alexandria, Egypt

Amira ElBaradei*1,2, Nancy M. Ahmed 3, Sherine M. Shawky 4

1- Department of Microbiology and Immunology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
2- Alexandria University Hospital, Alexandria University, Alexandria, Egypt.
3- Clinical Pharmacy Unit, Mabaret El-Asafra Hospital, Alexandria, Egypt.
4- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt.

ARTICLE INFO

Report history:
Received 24 March 2022
Received in revised form 2 April 2022
Accepted 4 April 2022

Keywords:
Ochrobactrum anthropi
AmpC
RecA
16S rRNA
blaOCH

ABSTRACT

Background: *Ochrobactrum anthropi* (*O. anthropi*) is a Gram-negative, nonfermenting bacillus, which has been recovered from clinical samples worldwide. However, it has never been reported from any clinical sample in Egypt. To the best of our knowledge, we report for the first time, the isolation of *O. anthropi* from bloodstream infection of a 75-year-old female patient. *Ochrobactrum anthropi* identification was performed using Vitek-2 system (BioMérieux, Marcy l’Etoile, France), and confirmed using 16S rRNA sequencing. The organism was further classified as *O. anthropi* subclade I, using recA sequence analysis. Susceptibility testing was carried out using broth microdilution method, and the isolate was found to be resistant to both ceftazidime and cefepime. Molecular investigation of genes conferring resistance to the third and fourth generation cephalosporins, showed that the isolate harbored *blaOCH*-6 gene, and that *blaTEM*, *blaSHV* and *blaCTX-M* were not present. This work highlights the first isolation of *O. anthropi* from bloodstream infection in Alexandria, Egypt.

Introduction

Ochrobactrum anthropi (*O. anthropi*) is a nonfermenting, motile, Gram-negative bacillus. Genus *Ochrobactrum* belongs to family Brucellaceae, which includes other genera such as *Brucella, Pseudoochrobactrum* and *Paenochrobactrum*. In 1988, *Ochrobactrum* was first described as a new genus for organisms previously known as centers for disease control and prevention (CDC) group Vd. *Ochrobactrum anthropi* was designated its type species [1-4]. *Ochrobactrum* species have been isolated from diverse environmental sites such as water, soil, plants, however, few species including *O. anthropi*, *O. intermedium, O. pseudintermedium and O. haematophilu* have been recovered from human clinical samples [1-3].

Despite being closely related to genus *Brucella, O. anthropi* is considered a pathogen of low virulence. Genotypically, *O. anthropi* strains constitute a single clade that is further subdivided into six subclades designated (subclade I to subclade VI) [1,3,4]. The current work represents the first report of *O. anthropi* isolated from bloodstream infection in Alexandria, Egypt.
Patient and Methods

Case presentation
A 75-year-old female patient presented to the emergency room. Her main complaints were fever, severe abdominal pain, nausea, and vomiting. The patient gave history of hypertension, diabetes, osteoarthritis, and the presence of a permanent pacemaker. Examination showed the following signs: fever (>39°C), abdominal tenderness, bilateral lower-limb edema, elevated blood pressure (>150/95), tachycardia (80 B/min) and bed sores (grade 2) in sacral and both lower limbs. She was transferred to the intensive care unit (ICU) and the following investigations were conducted.

Laboratory investigations
Complete blood picture showed mild leukocytosis with absolute neutrophilia, C-reactive protein: 438.9 mg/L, D-dimer: 1998 ng/ml, brain natriuretic peptide (BNP): 17241 pg/ml and procalcitonin > 100 ng/ml. Blood culture was withdrawn, and a positive signal was detected 18 hours post-inoculation on BacT/Alert 3D system (BioMérieux, Durham, NC, USA). It revealed the growth of a Gram-negative bacilli, which was identified as *Ochrobactrum anthropi* using Vitek-2 system (BioMérieux, Marcy l’Etoile, France). However, antimicrobial susceptibility could not be determined using this automated system because the card that was used was AST GN 222 (BioMérieux, Marcy l’Etoile, France), which was not the appropriate card for such organism. The patient was given meropenem empirically (loading dose: 1 gram/8 hours, maintenance dose: 1 gram/ 12 hours).

Ultrasound and radiologic investigations
Abdominal ultrasound revealed massive fluid collection at paracolic gutter. CT colonography revealed retro-pneumoperitoneum, rectosigmoid inflammatory process with upper rectal mural defect, para-umbilical hernia, enlarged liver and ascites as well as calculary gall bladder. Echocardiography revealed dilated ascending aorta, mild tricuspid regurgitation, pulmonary hypertension and that the ejection fraction was 50-55%. Lower limb doppler was free.

Ultrasound-guided aspiration from the abdominal fluid was carried out, and the aspirate was cultured on blood, MacConkey and Sabouraud dextrose agar (Oxoid, Cambridge, UK). Colonies grew on blood and Sabouraud Dextrose agar. Identification and antifungal susceptibility testing were performed using Vitek-2 system (BioMérieux, Marcy l’Etoile, France), and showed that the organism was *Candida albicans*, which was susceptible to all the antifungal agents tested (fluconazole, voriconazole, micafungin and caspofungin). The patient was given fluconazole (loading dose: 800 mg once, maintenance dose: 200 mg/24 hours). The patient was diagnosed with intrabdominal sepsis and gastrointestinal tract (GIT) perforation.

Other procedures
The patient underwent exploration surgery. Evacuation of intraperitoneal stool collection as well as retroperitoneal abscesses was performed. Insertion of right and left drains and colostomy was done. Unfortunately, the patient condition deteriorated as shown by hemodynamic instability on vasopressors (norepinephrine and dobutamine). The patient was mechanically ventilated and died four days later.

Since this was the first time to encounter *O. anthropi* in a clinical sample from Egypt, further investigations were carried out.

Identification of the isolate using molecular techniques

Amplification of 16S rRNA and recA

16S rRNA gene and recA were amplified by PCR. The primers and their annealing temperatures are shown in table (1). For the amplification we used: 95 °C for 2 minutes, followed by 30 cycles at 95 °C for 1 minute, 50 °C for 1 minute, 72 °C for 1 minute, and a final elongation step of 72 °C for 7 min. The PCR reactions were performed on Veriti thermal cycler (Applied Biosystems, CA, USA), using DreamTaq Green PCR Master Mix (Thermofischer, CA, USA).

16S rRNA and recA sequence analysis

The obtained amplicons of 16S rRNA and recA were sequenced using ABI 3730x1 DNA sequencer (Applied Biosystems, CA, USA) using the forward and reverse primers listed in table (1). Then, the obtained sequences were compared with the corresponding previously described sequences in GenBank using the BLASTN (https://blast.ncbi.nlm.nih.gov) tool.

The resulting nucleotide sequences of 16S rRNA showed 100% identity with 16S rRNA of *O. anthropi* and that of *O. lupini* as well as that of *O. cytisi* (GenBank accession number: MH281752.1, MT081281.1 and MF928100.1, respectively).

Using recA sequence analysis, the identification of the isolate was confirmed as *O. anthropi* and it was further classified as one of the members of subclade...
I. The constructed phylogenetic tree is shown in figure (1). The obtained 16S rRNA and recA nucleotide sequences were deposited in the GenBank database.

Susceptibility testing

Susceptibility testing of the isolate was performed using broth microdilution method according to the Clinical and Laboratory Standards Institute (CLSI) M-100 guidelines for non-Enterobacterales [5]. The antibacterial agents tested were meropenem, ceftazidime, cefepime, gentamycin, amikacin, and levofloxacin. The isolate was found to be susceptible to meropenem, gentamycin, amikacin and levofloxacin. However, it was resistant to ceftazidime and cefepime. The obtained minimum inhibitory concentration (MIC) values are shown in table (2).

Molecular detection of antimicrobial resistance genes

Genes which confer resistance to ceftazidime and cefepime (blaTEM, blaSHV, blaCTX-M and blaOCH) were investigated. The primers and their annealing temperatures are shown in table (1). The amplification scheme was similar to that previously mentioned for 16S rRNA and recA. Only blaOCH gene was detected. The amplicon (547 bp) was sequenced, and the resulting nucleotide sequence was deposited in the GenBank database. BLASTN (https://blast.ncbi.nlm.nih.gov) tool was used and the obtained sequence was identified as blaOCH-6 gene. The constructed phylogenetic tree is shown in figure (2).

Nucleotide sequence accession numbers

<table>
<thead>
<tr>
<th>Primer</th>
<th>Nucleotide Sequence (5’–3’)</th>
<th>Used for</th>
<th>Annealing temperature in °C</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pr0R2 (F)</td>
<td>AGAGTTTGATCMTGGCTCAG</td>
<td>Amplification and sequencing of 16S rRNA gene</td>
<td>50</td>
<td>[1]</td>
</tr>
<tr>
<td>9REV (R)</td>
<td>AAGGAGGTGATCCAGCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>recA (F)</td>
<td>ATGTCTCAAAATTCATTGCGAC</td>
<td>Amplification and sequencing of recA</td>
<td>51</td>
<td>[4]</td>
</tr>
<tr>
<td>recA (R)</td>
<td>AGCATCTTCTTCCGGTGCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blaOCH (F)</td>
<td>CAGCTTCGACAAGATCACCAC</td>
<td>Amplification and sequencing of blaOCH</td>
<td>53</td>
<td>[6]</td>
</tr>
<tr>
<td>blaOCH (R)</td>
<td>CTTGAGCGCAGTCCGATAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blaSHV (F)</td>
<td>GCAAAAACGCGGGGTATTC</td>
<td>Amplification of blaSHV</td>
<td>50</td>
<td>[7]</td>
</tr>
<tr>
<td>blaSHV (R)</td>
<td>GGTTAGCGTTGCCAGTGCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blaTEM (F)</td>
<td>ATGAGTATTCAACATTTTCCG</td>
<td>Amplification of blaTEM</td>
<td>46</td>
<td>[8]</td>
</tr>
<tr>
<td>blaTEM (R)</td>
<td>TTAATCGTGGGACGGCTAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blaCTX-M (F)</td>
<td>CGCTTTGCAGTGTGCAG</td>
<td>Amplification of blaCTX-M</td>
<td>50</td>
<td>[7]</td>
</tr>
<tr>
<td>blaCTX-M (R)</td>
<td>ACCGCGATATCGTTGGT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Susceptibility pattern of our isolate.

<table>
<thead>
<tr>
<th>Antibacterial Agent</th>
<th>MIC in µg/ml</th>
<th>Interpretation *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meropenem</td>
<td>< 0.5</td>
<td>S</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>> 256</td>
<td>R</td>
</tr>
<tr>
<td>Cefepime</td>
<td>256</td>
<td>R</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>< 0.5</td>
<td>S</td>
</tr>
<tr>
<td>Amikacin</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>< 0.5</td>
<td>S</td>
</tr>
</tbody>
</table>

*Interpretation according to the CLSI guidelines for non-Enterobacterales [5].

Figure 1. Phylogenetic tree based on recA sequence analysis.
Phylogenetic tree was inferred by using the Maximum Likelihood method and Tamura 3-parameter model. The bootstrap values were calculated from 1000 replications. Evolutionary analysis was conducted in MEGA X.

Figure 2. Phylogenetic tree for the different variants of blaOCH.
Phylogenetic tree for the different variants of blaOCH was inferred by using the Maximum Likelihood method and Jukes-Cantor model. The bootstrap values were calculated from 1000 replications. Evolutionary analysis was conducted in MEGA X.
Discussion

Ochrobactrum anthropi has been regarded as a pathogen of low virulence. O. anthropi has been isolated from different clinical cases such as bacteremia, endocarditis, and others [1-3].

Ochrobactrum anthropi isolates in Egypt, were previously isolated from environmental samples such as hydrocarbon contaminated soil [9,10], plant-soil systems [11] as well as other environmental samples [12,13]. Here, we describe the isolation of O. anthropi from the bloodstream of an elderly female patient.

Identification of O. anthropi can be challenging; misidentification of O. anthropi as Ralstonia paucula or as Brucella spp. has been previously reported [1,14]. In the current study, the bacterium was correctly identified as O. anthropi using Vitek-2 system (BioMérieux, Marcy l’Etoile, France).

In the present study, 16S rRNA sequence analysis was used to confirm O. anthropi identification, however, it could not differentiate between O. anthropi and O. cytisi. Using recA sequence analysis, O. anthropi identification was confirmed and the isolate was classified as a member of subclade I.

Ochrobactrum anthropi is characterized by being resistant to beta-lactams except for carbapenems. This trait is mediated via an AmpC-like beta-lactamase enzyme. This enzyme is encoded by O. anthropi ampC (blaOCH) gene [15], which has seven different variants: blaOCH-1 to blaOCH-7. The isolated O. anthropi was resistant to cefazidime and cefepime and the only gene that could be detected was blaOCH-6. The enzyme encoded by blaOCH gene is resistant to inhibition by clavulanic acid [1,15], and is also present in non-anthropi species, such as O. intermedium and O. tritici [6].

Conclusion

To the best of our knowledge, we report for the first time, the isolation of O. anthropi from bloodstream infection of a 75-year-old female patient in Alexandria, Egypt. Constant surveillance for emerging pathogens is desperately needed as different environmental organisms are being recovered among clinical isolates worldwide. Robust infection control measures are crucial to prevent possible outbreaks due to these organisms. Effective antimicrobial programs play a fundamental role to attain judicious use of antimicrobial agents to pave the way for achieving best clinical outcomes.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

All authors declare no conflicts of interest in this paper.

Ethical approval

Ethical approval was obtained from the Ethical Committee of the Medical Research Institute, Alexandria University.

References

