Incidence of multidrug-resistant *Salmonella* spp. in local food products sold in Ado-Ekiti, South Western Nigeria

Olawande Fajilade, Oluwafemi Ajenifuja, Taiwo Layo-Akingbade

Background: Contaminated foods of animal origin are the primary reservoirs for human non-typhoidal *Salmonella* infections. Transmission of *Salmonella* to humans typically occurs by ingesting meat, dairy products, and other foods contaminated by animal feces from foods contaminated with *Salmonella*. **Aim:** This work aimed at the detection and incidence of viable *Salmonella* in local food products sold and consumed in Ado – Ekiti. **Methods:** Typing by pulse-field gel electrophoresis (PFGE), polymerase chain reaction (PCR) detection of antimicrobial drug resistance genes, and antibiotic susceptibility testing were done. **Results:** Out 105 samples analyzed, *Salmonella* species was isolated in 77 with highest incidence (100%) observed in kunu, pork meat, egg roll, raw egg and chicken. The antimicrobial drug resistance patterns on the isolates showed that *Salmonella* species were resistant to cotrimoxazole (100%), chloramphenicol (100%), amoxicillin (100%), ampicillin (86%) and ofloxacin (57%) while decreased susceptibility to ciprofloxacin (100%), streptomycin (100%), gentamycin (86%) and pefloxacin (71%) was found. Multidrug resistance was observed in about 77% of the isolates. With PFGE, a total of eighty-three (83) patterns were observed and thirty-six (36) isolates had the 3 most common patterns. All isolates from kunu and pork meat contained qnrB2, 6 (86%) isolates from egg roll contained blaCMY-2; 9 (75%) isolates from liquid egg and chicken each contained blaCMY-23. The total isolate of 73% is an indication of high incidence of *Salmonella* spp. in food products obtained in Ado-Ekiti. **Conclusion:** This study showed antimicrobial drug resistance in low resource settings and urgent need for surveillance and control of this phenomenon is recommended.

Introduction

How safe is our food? It sounds a simple question. However getting a reasonable answer is far from simple. The basic problem lies in the fact that only a small fraction of foodborne disease cases get reported through official (or unofficial) reporting systems. Calculating the ‘real’ rate of foodborne illness requires developments of models that use reported cases as a starting point to estimate underlying disease rates. Given the plethora of pathogens that been transmitted through foodborne routes, this is a complex and somewhat daunting process. It is therefore necessary to access the safety of foods and develop strategies that will prevent disease spread [1,2].

Contaminated foods of animal origin are the primary reservoirs for human nontyphoidal *Salmonella* infections [3]. Transmission of *Salmonella* to humans typically occurs by eating raw or undercooked meat, poultry, eggs or egg products, which are majorly the sources of *Salmonella* infection. The organisms pass through the food chain from primary production or cross contamination from food and meat products in

Keywords: Multidrug resistance *Salmonella* spp., Food and meat products, Incidence
households or food service establishment and institution such as hospital to food consumed by the public [4]. Nontyphoidal Salmonella isolates produce a common food-related infection that causes mild and self-limiting diarrhoea and, occasionally, a potentially fatal invasive disease with bacteremia and endovascular infection [5]. They colonize the gastrointestinal tracts of cattle and other animals; many infected cattle are asymptomatic carrier. They can survive for weeks outside a living body [6]. They had been found in dried excrement after two and half years. It is not destroyed by freezing, ultra violet radiation but heat accelerates their demise, and they perish after being heated to 55°C for one hour or 60°C for 30 minutes [3].

Antimicrobial agents such as fluoroquinolone and third-generation cephalosporin are commonly used to treat severe human Salmonella infections [7]. Resistance to these and other antimicrobial drugs, as well as multidrug resistance has increased over the last several decades, probably as a consequence of antimicrobial agents in use at intensive animal husbandry and medicine [8]. Antimicrobial resistant strains of Salmonella species are now widespread all over the world. In developed countries, it is becoming more and more accepted that a majority of resistant strains are of zoonotic origin and have acquired their resistance in an animal host before being transmitted to human through the food chain [9].

The emergence of antimicrobial drug resistance is a matter of concern. Therefore this research work aims at the detection and incidence of viable Salmonella in local food products sold and consumed in Ado – Ekiti, and to determine the rate of multi-drug resistance amongst the isolated Salmonella.

Materials and Methods

Collection of samples

Total number of one hundred and five (105) samples; which comprised kunnu (12), yoghurt (12), pork meat (14), chicken (13), turkey (7), egg roll (7), meat pie (7), gala sausage (7), raw egg (12), tin tomatoes (7), and cake (7) were bought from Oja-Oba; a highly patronized market in Ado – Ekiti metropolis, Ekiti State. The food samples were randomly selected and separately collected in sterile tightly covered plastic containers, and then brought to the laboratory within 45 minutes of collection.

Preparation of samples, isolation and identification of Salmonella

The samples were kept in sterile beakers separately and they were homogenized aseptically to obtain suspension. The homogenates were cultured into Nutrient Broth (MP Biomedicals, USA). The streaked plates were inverted and were incubated at 37°C for 24hrs. A loopful of the suspension was subculture on Shigella–Salmonella agar (Thomas Scientific, USA). The Salmonella spp. was identified using conventional methods [10].

Susceptibility testing

Susceptibility testing was carried out by disk diffusion method according to Clinical and Laboratory Standard Institute [11]. A colony from stock was sub-cultured into 5 mL of nutrient broth (LAB) and was incubated at 37°C for 18h. About 0.1 mL of the overnight broth of each organism was pipette into 9.9 mL of the broth to yield a 10¹ dilution [11]. The procedure was continued to obtain a final dilution of 10⁶. The bacterial suspension was spread onto a Mueller-Hinton agar (MP Biomedicals, USA) and a multi disk (Abtek, UK) containing cotrimoxazole (25µg), chloramphenicol (30µg), sparfloxin (10µg), ciprofloxacin (10µg), ampicillin (10µg), amoxicillin (30µg), gentamycin (10µg), pefloxacin (10µg), and streptomycin (30µg) were placed on the agar. Multidrug resistance was defined as non-susceptibility to ≥3 antimicrobial drug classes [11].

Pulsed-field gel electrophoresis (PFGE)

All Salmonella isolates were analyzed for genetic relatedness by PFGE by using Xba I according to the CDC PulseNet protocol [12]. Electrophoresis was performed with a CHEF-DR111 system in the Science Technology Research Lab, Federal Polytechnic, Ado-Ekiti, Nigeria by using 1% Seakem agarose in 0.5x Tris-borate-EDTA at 180V. Running conditions consisted of 1 phase from 2.2 to 63.8s for a run of 22h.

PCR detection of antimicrobial drug resistance genes

Presence of qnr genes was determined by using PCR; using the QIAGEN Plasmid Purification mini kit, with primers QP1 and QP2 for qnrA. FQ1 and FQ2 for qnrB, and 5'-ATGGAAAACCTACAATCATA-3’ and 5’-AAAAACACCTCGACTTAAGT-3’ for qnrS. The qnrB allele was determined by amplification and sequencing with primers FQ1 and FQ2. Screening for aac(6’)-Ib-cr was performed [13]. Primer pairs used for amplification of β-lactamase genes were;
bla_{cmy} (5’-ATGATGAAAAATCGTTATGC-3’)
and (5’TTCGAGCTTTTCAAGAATGC-3’),
bla_OXA-1 (5’-ATGATGAAAAATCGTTATGC-3’)
and (5’TTCGAGCTTTTCAAGAATGC-3’),
bla_{SHV} (5’-ATGATGAAAAATCGTTATGC-3’)
and (5’TTCGAGCTTTTCAAGAATGC-3’).

Genes were screened by using a multiplex PCR assay [14].

Results

The results of this work are shown in tables below. Table 1 shows the incidence of Salmonella spp. in some food and meat product samples. High incidence (100%) of Salmonella spp. was observed in kunu, pork meat, chicken, egg roll, and raw egg; while low incidence was observed in tin tomatoes and gala sausage, and cake. Out of 105 samples tested, 77(73%) were positive for the Salmonella spp.

Table 2 shows the susceptibility pattern of Salmonella spp. to conventional antimicrobial agents. All the isolates were sensitive to ciprofloxacin 77(100%), and cotrimoxazole 77(100%), while 66(86%) and 55(71%) were sensitive to gentamycin and pefloxacin respectively. All isolates were resistant to cotrimoxazole, chloramphenicol and amoxicillin while 66(86%) and 44(57%) were resistant to ampicillin and ofloxacin respectively. With PFGE, a total of eighty- three (83) patterns were observed and thirty-six (36)(43%) isolates had the 3 most common patterns. The isolates with these patterns were found to show high resistance to cotrimoxazole, chloramphenicol, ampicillin and amoxicillin.

Table 1. Incidence of Salmonella species in some food and meat product samples.

<table>
<thead>
<tr>
<th>Source</th>
<th>No of samples</th>
<th>Total number of isolates</th>
<th>Percentage of isolate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kunu</td>
<td>12</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>Yogurt</td>
<td>12</td>
<td>11</td>
<td>92</td>
</tr>
<tr>
<td>Pork meat</td>
<td>14</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>Chicken</td>
<td>13</td>
<td>13</td>
<td>100</td>
</tr>
<tr>
<td>Turkey</td>
<td>7</td>
<td>2</td>
<td>29</td>
</tr>
<tr>
<td>Egg roll</td>
<td>7</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Meat pie</td>
<td>7</td>
<td>5</td>
<td>71</td>
</tr>
<tr>
<td>Gala sausage</td>
<td>7</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Raw egg</td>
<td>12</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>Tin Tomatoes</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cake</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>105</td>
<td>77</td>
<td>73</td>
</tr>
</tbody>
</table>

Table 2. Susceptibility pattern of Salmonella sp. to conventional antibiotics.

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Sensitive (%)</th>
<th>Resistance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotrimoxazole</td>
<td>Nil</td>
<td>77 (100)</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>Nil</td>
<td>77 (100)</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>33 (43)</td>
<td>44 (57)</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>77 (100)</td>
<td>Nil</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>11 (14)</td>
<td>66 (86)</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>Nil</td>
<td>77 (100)</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>66 (86)</td>
<td>11 (14)</td>
</tr>
<tr>
<td>Pefloxacin</td>
<td>55 (71)</td>
<td>22 (29)</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>77(100)</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Discussion

The high incidence of the isolated Salmonella spp. in these food products may be due to the preparation processes which may be done under unhygienic environmental conditions. Contamination also could result from the carrying and selling environment, cross-contamination from dust, no cognizance of shelf-life of the products, packaging and sale containers and from the hands of vendors. It has been detected that non typhoidal
Salmonella spp. are leading causes of foodborne illnesses in England, Australia and United States [2].

All isolates from kuna and pork meat samples contained qnrB2, 6(86%) isolates from egg roll contained blacMY, 2; 9 (75%), isolates from raw egg and chicken each contained blacMY, 2 which is the mechanism for extended-spectrum cephalosporin resistance. The genes that code for this resistance have proven to be remarkably mobile and widely distributed within and between species. Integrons are widely distributed among Salmonella spp. and are potentially capable of transmitting drug resistance [15]. Similarly Dallal et al. [16] reported Salmonella spp. from beef sample as 100% resistant to erythromycin and tetracycline; 60% resistant to sulphamethoxazole, and all isolates were susceptible to ciprofloxacin and streptomycin.

Multidrug resistance is evidenced in this study and this can be ascribed to the wide spread use of antibiotics both inside and outside of medicine, selling of the antibiotics over the counter without prescription, misuse and over use of antibiotics by doctors as well as patients, inappropriate prescription and most significantly for this study, addition of antibiotics to the feed of livestock. The multi-drug resistant result in this study is higher than that of Al-Salauddin et al. [17] who reported 16.67% isolates of Salmonella originated from broiler meat as multidrug resistant. These findings showed that multi-drug resistant in Salmonella spp. is prone to increase with the time due to indiscriminate use of antibiotics in dairy and poultry industry.

The emergence of Salmonella strains that are resistant to commonly used antibiotics is important to clinicians, microbiologists and those responsible for the control of communicable diseases and also food industries. It is also important to farmer who may sustain economic losses when consumer confidence in their products is lost. Because use of antimicrobial agents contributes to increasing resistance and facilitates transmission of multidrug – resistant salmonellae, promoting guidelines aimed at improving appropriate use of antimicrobial agents may help prevent transmission of multidrug – resistant Salmonella infections in food and meat products. Control of multi-drug resistant Salmonella typhimurium DT 104 requires reducing infection in foods, meats and lowering the risk of contamination at all stages in the production chain [18]. In addition, the avoidance of unnecessary antibiotics usage in animal feeds should be combined with good husbandry, good abattoir practice and good hygiene at all stages in the food production chain from processing plants to kitchens and food service establishments.

The need for thorough cooking of food prior to consumption should be emphasized. Educating farmers regarding the risk of occupationally acquired infections is of great significance. From the result of the susceptibility test, there is increase in the incidence of Salmonella resistance to antimicrobial agent. This suggests that there should be a compulsory reassessment of the pathogen reduction e.g. increase product testing, more efficient cleaning and sanitization, better microbiological quality control and maintaining of micro flora at a low level during packaging, handling and storage of products, avoiding excess use of antibiotics in feeds and medication believing such intervention might concurrently reduce Salmonella contamination of food and meat products. Integration of human public sanitary surveillance system is of utmost importance in our public health infrastructure. Since 1994, an increasing number of isolates with additional resistance to trimethoprim and a few to ciprofloxacin have been reported [5].

Conclusion

The Salmonella spp. isolated from the local food products sold in the study area were susceptible, and as well resistant to antibiotics. The findings of this study can be used to assist in the direction of policy and interventions; to conduct other analyses like the evaluation of economic cost of Salmonella infections while attributing it to various food and meat products sold in Ado-Ekiti. It enables the populace to be advised on what food product should be allowed for sale and consumption in the community.

Acknowledgment

Dr. Victor Adeyinka Ajibade, the impact you made, and the legacy you left behind in the Department of Science Technology, Federal Polytechnic, Ado-Ekiti, Nigeria, in Ekiti State, in Nigeria, and in the world can never be forgotten. I acknowledge your intellectual impartation in the success of this study. You will always be remembered.

Conflict of interest

The authors declare no conflict of interest.

Financial disclosures: None.
References

3- Hoelzer K, Moreno SAI, Wiedmann M. Animal contact as a source of human non-typhoidal salmonellosis. Veterinary Research 2011; 42, 34.

9- Helms M, Simonsen J, Molbak K. Quinolone resistance is associated with increased risk of invasive illness or death during infection with Salmonella serotype Typhimurium. Journal of Infectious Diseases 2004; 190: 1652-1654

