Applying endoluminal catheter colonization surveillance cultures in renal dialysis unit- an effort to reduce catheter related blood stream infection rate

1- Medical Microbiology and Immunology Department, Faculty of Medicine, Benha University, Benha, Egypt.
2- Internal medicine Department, Faculty of Medicine, Benha University, Benha, Egypt.
3- Anesthesia & Intensive Care Department, Faculty of Medicine, Benha University, Benha, Egypt.
4- Clinical and chemical pathology Department, Faculty of Medicine, Benha University, Benha.

Abstract

Introduction: Catheter related blood stream infection (CRBSI) is a common complication with the use of central venous catheters (CVC) in hemodialysis patients. The study was designed to evaluate the effect of implementation of surveillance cultures (SCs) on the rate of CRBSIs. Method: This prospective cohort study was done over a period of 6 months on hemodialysis patients with internal jugular vein catheters. Catheter related blood stream infection rates (BSI) were measured and compared in the 2 included groups, the study group (15 patients) and the control group (15 patients). In both groups, conventional infection prevention and control measures were applied. Patients in the study group were checked for intraluminal microbial colonization every 2 weeks by SCs. According to SCs results, patients were classified into 4 groups, then according to the group they were managed with antibiotic lock therapy (ALT) with or without systemic antibiotics. Results: Of the collected 140 SCs from the study group, 108 (77%) were negative and 32 (23%) were positive. Eighteen cases in groups 2 & 3 received ALT and 6 patients in group 4 received ALT and systemic antibiotic. SCs succeed to eliminate intraluminal microbial colonization in all positive cases except for 1 case in group 2 and 3 cases in group 4. The CRBSI rate was 2.14 per 1,000 catheter days in the study group compared to 5.57 per 1,000 catheter days in the control group (P=0.037). Conclusion: This study shows that the implementation of periodic SCs is associated with a significant reduction in the CRBSI rates in hemodialysis patients.

Introduction

End-stage renal disease (ESRD) is a major health problem in Egypt. In 2017, there were 7.1 million (95% UI 6.6 to 7.7) cases of chronic kidney disease that resulted in 13115 (95% UI 11314 to 14968) deaths [1]. There are efforts to establish national guidelines for hemodialysis in Egypt and assess the compliance with these guidelines including infection control practices with the limited resources [2-4].

Dialysis carries the risk of high mortality and morbidity. The annual mortality rate in one center study done in 2007 in Egypt was 8% [4] and it was 10% in Saudi hemodialysis patients in 2016 [5]. Patients on hemodialysis have a 26-fold higher risk of bloodstream infection compared to general population [6]. In United States, infection is the second leading cause of hospitalization and death in patients with ESRD [7]. The mean rates of blood
stream infections (BSI) in hemodialysis patients ranges from 0.5 to 27.1 per 100 patient/month, 77% of these BSI are access-associated in patients with central lines [8].

Among the different types of hemodialysis access, central venous catheter (CVC) is the commonest source of bacteremia. About 77% of BSI in hemodialysis patients are access-associated in patients with central lines [8]. It is estimated that 37,000 of BSI occurred among hemodialysis patients in the United States in 2008 are related to central lines [9]. Although it is better to avoid the use of CVC to prevent CVC-related infections [10], the tunneled CVCs are used as long-term vascular access when the arteriovenous fistula (AVF) possibilities were exhausted or as a temporary vascular access in acute kidney injury, delayed AVF maturation, till transplantation and before peritoneal dialysis [11].

The ability of bacteria and fungi to survive and proliferate within the biofilm that initially formed from the host proteins promotes intravascular catheter colonization with protection from host immune defenses and antimicrobial agents [12]. The data obtained from several studies indicate that the intraluminal microbial colonization of hemodialysis catheters often precedes BSI [13–17].

Different approaches and trials have been done to minimize luminal colonization and BSI [16,18–21]. One of the suggested methods to check the luminal colonization is endoluminal surveillance cultures (SCs), but few studies were done to evaluate this method [15,22,23]. The aim of this study was to evaluate the effect of implementation of SCs on the rate of CRBSIs.

Materials and methods
Setting and study design
This prospective cohort study was conducted on patients undergoing regular catheter hemodialysis in the Dialysis Unit at Benha University Hospital, Egypt during the period from February 2018 to July 2018. The study was approved by the ethics committee of the institution and all enrolled patients gave informed consents.

Patients already having internal jugular vein inserted tunneled cuffed central venous catheter (TCC) and patients who got jugular vein TCC inserted during the study period were included. Patients left the study when they were transferred to another center, when their TCC were permanently removed due to any cause or upon death. All needed data were collected prospectively for all patients.

The patients were divided into 2 groups, the study group and the control group. Surveillance cultures were applied only in the study group. Both groups were observed for CRBSIs during the study period. Infection control measures for TCC insertion and maintenance were applied in both groups according to the internal written policy [24]. Catheters were inspected for exit site and tunnel infection and managed in both groups according to the internal guidelines [24,25].

Surveillance cultures
The colonization of the inner surface lumen of the CVC was assessed every 2 weeks by SCs described by Rodriguez et al. [26]. Five to ten ml of blood: heparin (3:2) mixture were collected from the arterial catheter lumen before connecting the patient to the hemodialysis machine. The withdrawn sample was inoculated into aerobic blood culture bottle then incubated for 5 days in an automated blood culture system (BacT/Alert, bioMerieux, Durham, NC). We didn’t draw from a line that had an antibiotic agent administered through it during previous hour. Time-to-positivity (TTP); defined as the span of time from the start of culture incubation to the detection of microbial growth by an automated system [27] was recorded for SCs signaled positive which then subcultured for isolation and identification of microorganisms.

Based on SCs results, patients were grouped into 4 groups and managed as proposed by Brañes et al. [23]:

group 1: SCs were negative, then no special management was required.

group 2: SCs were positive for CoNS, streptococcus viridians group, Corynebacterium spp. Micrococcus spp. or bacillus spp. with TTP >14 hours. Antibiotic lock therapy was implemented after ensuring that it was colonization rather than contamination by repeating the SC before the next hemodialysis session. ALT (according to the colonizing bacteria) with heparin, was given after each hemodialysis sessions in the next 2 weeks after reporting the positive culture result.

group 3: positive for organisms as in group 2 with TTP ≤ 14 hours. Then, catheter colonization was considered, and ALT was implemented as described in group 2.

group 4: SCs were positive for any other microorganism (e.g. *Staphylococcus aureus*, Enterococcus species., Gram-negative bacilli, Candida spp., …). This was highly suspected for
CRBSI, so blood cultures from a peripheral vein and the CVC were withdrawn for confirmation, ALT was implemented, and patients were clinically assessed for systemic antibiotic therapy and managed according to the applied guidelines [28].

Diagnosing CRBSIs

Patients in both groups were observed clinically during the study period for CRBSIs. Any suspected case was diagnosed by a differential time to positivity where diagnosis was done when identical organism (i.e. same species and antibiogram) was recovered from the hub blood culture and from the percutaneous peripheral blood culture and the hub blood culture signaled positive result at least 2 hours earlier than the peripheral blood cultures [25].

Microbial identification

Microbial identification and susceptibility testing were done using Automated Sensititre System (TREK Diagnostic system, Inc., Cleveland, Ohio).

Statistical analysis

Groups were compared using Fisher exact test for categorical variables and Mann-Whitney U test for continuous variables. Data analysis was performed using Medcalc software version 19.4.0. Categorical data were presented as number and percentages while quantitative data were expressed as mean ± standard deviation. The rate of CRBSI was calculated as incidence and was reported per 1,000 catheter days in both groups then the relative risk was calculated. The accepted level of significance in this work was stated at P-values < 0.05.

Results

A total of 30 patients were included in the study of which 23 were with pre-existing CVC and 7 were get their CVC inserted during the study period. They required a total of 41 TCCs, 11 were removed during the study period, all because of infection. Seven patients left the study before its allotted time ended: 1 patient in the study group was transferred to other center, 1 patient in the control group the catheter no further required, and 5 patients died (2 in the study group, 3 in the control group). Details of patients’ number and characteristics in both study and control groups are shown in table (1).

During the study period, a total of 140 SCs were collected from the study group patients with a mean number per patient of 9.3 ± 2. Of these, 108 (77%) were negative (group1), 15 (10.7%) SCs were in group 2, 11 (7.9%) were in group 3 and 6 (4.3%) were in group 4. All group 2 SCs were repeated on the next dialysis session to confirm colonization, 8 (5.7%) yield no growth so the previous results were considered as contamination while 7 (5%) were truly colonized as the same results were obtained. Out of the total 24 SCs that revealed luminal colonization, eighteen (12.8%) cases in groups 2 & 3 received ALT and six (4.3%) patients in group 4 received ALT and systemic antibiotic according to the isolated microorganism and followed up for development of CRBSI. Results of SCs and the isolated microorganisms and the outcomes in the study group are summarized in figure (1).

Both study groups were observed for CRBSI. Six CRBSIs were reported in the study group, and 17 CRBSIs in the control group. Three out of the 6 CRBSI reported in the study group followed the positive SCs despite ALT and systemic antibiotic administration and the causative organisms were the same as those recovered from the SCs (2 *Enterococcus faecalis*, 1 *Staphylococcus aureus*). The overall rate of CRBSIs per 1,000 CL days was 2.14 in the study group compared to 5.56 in the control group. This result showed 61.5% reduction in CRBSIs rate in the study group in comparison with the control group (Table 2).

In the both groups, *Staphylococcus aureus* was the most predominant isolated organism in CRBSI cases. In the study group, none of CRBSI was caused by Gram negative rods. Three of the cases in that group caused by endoluminal colonization as they were preceded by positive SCs with the same organism while the last SCs done for the other 3 cases before developing CRBSI were negative. The CRBSI causing microorganisms are shown in table (3).
Figure 1. Results of endoluminal surveillance culture in the study group patients.

Table 1. Comparison of patients’ characteristics in both included groups.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Study group (n = 15)</th>
<th>Control group (n=15)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)*</td>
<td>64.6 ± 9.18</td>
<td>58 ± 11</td>
<td>0.11</td>
</tr>
<tr>
<td>Male sex n (%)</td>
<td>(8) 53.3%</td>
<td>(9) 60%</td>
<td>1.00</td>
</tr>
<tr>
<td>Follow-up (days)*</td>
<td>151.7 ± 32.2</td>
<td>162.8 ± 35.4</td>
<td>0.27</td>
</tr>
<tr>
<td>Time from TCC insertion to beginning the study period*</td>
<td>33.9 ±31</td>
<td>40.4 ± 25.8</td>
<td>0.43</td>
</tr>
<tr>
<td>Patients with pre-existing CVC</td>
<td>11</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Patient catheter inserted during the study period</td>
<td>4</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Catheter site insertion, n (%)</td>
<td>30</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Internal jugular vein</td>
<td>30</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Number of catheters used during the study</td>
<td>19</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td>Catheters removed/catheters used</td>
<td>4/19 (21%)</td>
<td>7/22 (31.8%)</td>
<td>0.51</td>
</tr>
</tbody>
</table>

*Data are expressed as means ± SD

Table 2. CRSBI rate in the study group and control group.

<table>
<thead>
<tr>
<th></th>
<th>Study group</th>
<th>Control group</th>
<th>RR (CI =95%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of CRSBI</td>
<td>6</td>
<td>17</td>
<td>2.59 (1.02-6.6)</td>
<td>0.037</td>
</tr>
<tr>
<td>No. of CL days</td>
<td>2796</td>
<td>3049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRBSI rate per 1,000 CL days</td>
<td>2.14</td>
<td>5.57</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RR, relative risk; CL, central line; CI, confidence interval
Table 3. Isolated microorganisms form CRBSI cases in the two groups.

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Control group n (%)</th>
<th>Study group n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>8 (47)</td>
<td>3 (33.3)</td>
</tr>
<tr>
<td>Coagulase Negative Staphylococcus spp.</td>
<td>4 (23.5)</td>
<td>1 (33.3)</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>1 (5.9)</td>
<td>2 (33.3)</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>2 (11.8)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>1 (5.9)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>1 (5.9)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>6</td>
</tr>
</tbody>
</table>

Discussion

Long-term tunneled cuffed catheters are frequently used as a vascular access in patients on hemodialysis. A very common complication among these patients is CRBSI, with subsequent morbidities and increased risk of mortality. Removal of the CVC is a part of treatment of CRBSI in most patient populations. However, there are several difficulties that make such decision of catheter removal in patients undergoing hemodialysis not an easy one. Such difficulties include higher rates of venous thrombosis and stenosis in these patients that can lead to lack of future hemodialysis access sites and the presence of a feasible access site is very important for these patients who undergo dialysis for long period [29].

With application of SC, the CRBSIs rate is markedly reduced (61.5 % less than the control group) in the study group due to periodic surveillance for endoluminal colonization and prompt early eradication with ALT with or without systemic antibiotic according to the culture result. Surveillance culture in our study protected 18 patients (group 2&3) with CoNS colonized catheters and 3 patients (group 4) colonized with Staph. aureus and 2 Gram negative rods from possible CRBSI. Unfortunately, CRBSI couldn’t be prevented in the other 3 patients in group 4. The other 3 CRBSI incidents reported in the study group were caused by 2 *Staph. aureus* and 1 CoNS despite the negative result of the preceding SC. These cases resulted from infection at the catheter exit site.

Endoluminal catheter colonization as a risk factor for CRBSIs was a target of many studies. Most of these studies revealed the predominance of CoNS colonization of catheters. In Dittmer et al. study, 35% developed bacteremia with the same organisms already colonized their catheters and concluded that the colonization of catheter is mostly present 16 weeks after insertion [32]. Fux et al. observed colonization of the catheter inner lumen in 17.2% of the catheters that was dominated by multidrug-resistant CoNS [13]. In a study done by Koch et al., 62.5% of catheters were positively colonized with predominance of *Staphylococcus epidermidis* (68%) and 75% of catheters present for more than 30 days were colonized [30]. In addition to infection prevention and control guidelines for and maintenance of dialysis catheters several attempts have been tried to further decrease the catheter related infections. These attempts ranged from topical antibiotic application [33–35] to antibiotics locked in the catheter lumen between dialysis sessions insertion [14,16,18–21,36]. These studies blindly apply the prophylactic antibiotic, and this carries the major risk of development of antibiotic resistance in addition to the financial burden. Surveillance cultures with subsequent management according to the result has an advantage of targeted choice of antibiotic according to the isolated microorganism and antibiotic susceptibility results.

Limitations of this study are small number of patients included in the study and enrollment of patients with previously inserted catheters.
Investigation for other catheter related infections (exit site infection and tunnel infection) was required to clearly identify the source of CRBSIs, whether intra or extraluminal.

Conclusion

Endoluminal SCs is a convenient approach for early detection of luminal surface colonization and rapid initiation of preventive measures to eliminate such colonization before progression into blood stream infection. This is evidenced by reduction in CRSBI rate among hemodialysis patients with CVC with the application of endoluminal SCs. Further studies on larger number of patients to investigate the efficacy and cost-effectiveness of endoluminal SCs as a CRBSI preventive measure are recommended.

Conflict of interest statement: None declared.

Funding sources: None.

Acknowledgements

Authors appreciate the efforts of nurses and staff of Benha University Hospitals for their efforts and support to conduct this study.

References

4- Ibrahim S. Quality of care assessment and adherence to the international guidelines considering dialysis, water treatment, and protection against transmission of infections in university hospital-based dialysis units in Cairo, Egypt. Hemodialysis International 2010; 14(1): 61-67.

11- Weijmer MC, Vervloet MG, ter Wee PM. Compared to tunneled cuffed haemodialysis catheters, temporary untunneled catheters are

